A Nonlinear Decomposition Principle

1965 ◽  
Vol 13 (2) ◽  
pp. 266-271 ◽  
Author(s):  
J. L. Sanders
2018 ◽  
Author(s):  
Huseyin Coskun

A decomposition principle for nonlinear dynamic compartmental systems is introduced in the present paper. This theory is based on the mutually exclusive and exhaustive, analytical and dynamic, novel system and subsystem partitioning methodologies. A deterministic mathematical method is developed for the dynamic analysis of nonlinear compartmental systems based on the proposed theory. The dynamic method enables tracking the evolution of all initial stocks, external inputs, and arbitrary intercompartmental flows, as well as the associated storages derived from these stocks, inputs, and flows individually and separately within the system. The transient and the dynamic direct, indirect, acyclic, cycling, and transfer (diact) flows and associated storages transmitted along a particular flow path or from one compartment--directly or indirectly--to any other are then analytically characterized, systematically classified, and mathematically formulated. Thus, the dynamic influence of one compartment, in terms of flow and storage transfer, directly or indirectly on any other compartment is ascertained. Consequently, new mathematical system analysis tools are formulated as quantitative system indicators. The proposed mathematical method is then applied to various models from literature to demonstrate its efficiency and wide applicability.


1991 ◽  
Vol 56 (10) ◽  
pp. 2107-2141 ◽  
Author(s):  
Mirko Dohnal

Qualitative model is a theoretical background of commonsense. Complex qualitative models can have prohibitively many solutions (qualitative states). Therefore a qualitative analogy of such classical quantitative tools as e.g. the decomposition is developed. Practical applications of decomposition principle is nearly always ad hoc. Therefore two case studies are presented in details, a chemical process (mixer, chemical reactor, separator) and an anaerobic fermentor.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1401 ◽  
Author(s):  
José Manuel Carmona ◽  
José Luis Cortés ◽  
José Javier Relancio

A deformation of special relativistic kinematics (possible signal of a theory of quantum gravity at low energies) leads to a modification of the notion of spacetime. At the classical level, this modification is required when one considers a model including single- or multi-interaction processes, for which absolute locality in terms of canonical spacetime coordinates is lost. We discuss the different alternatives for observable effects in the propagation of a particle over very large distances that emerge from the new notion of spacetime. A central ingredient in the discussion is the cluster decomposition principle, which can be used to favor some alternatives over the others.


Sign in / Sign up

Export Citation Format

Share Document