Dynamic Programs with Shared Resources and Signals: Dynamic Fluid Policies and Asymptotic Optimality

2021 ◽  
Author(s):  
David B. Brown ◽  
Jingwei Zhang

Allocating Resources Across Systems Coupled by Shared Information Many sequential decision problems involve repeatedly allocating a limited resource across subsystems that are jointly affected by randomly evolving exogenous factors. For example, in adaptive clinical trials, a decision maker needs to allocate patients to treatments in an effort to learn about the efficacy of treatments, but the number of available patients may vary randomly over time. In capital budgeting problems, firms may allocate resources to conduct R&D on new products, but funding budgets may evolve randomly. In many inventory management problems, firms need to allocate limited production capacity to satisfy uncertain demands at multiple locations, and these demands may be correlated due to vagaries in shared market conditions. In this paper, we develop a model involving “shared resources and signals” that captures these and potentially many other applications. The framework is naturally described as a stochastic dynamic program, but this problem is quite difficult to solve. We develop an approximation method based on a “dynamic fluid relaxation”: in this approximation, the subsystem state evolution is approximated by a deterministic fluid model, but the exogenous states (the signals) retain their stochastic evolution. We develop an algorithm for solving the dynamic fluid relaxation. We analyze the corresponding feasible policies and performance bounds from the dynamic fluid relaxation and show that these are asymptotically optimal as the number of subsystems grows large. We show that competing state-of-the-art approaches used in the literature on weakly coupled dynamic programs in general fail to provide asymptotic optimality. Finally, we illustrate the approach on the aforementioned dynamic capital budgeting and multilocation inventory management problems.

2020 ◽  
Vol 66 (7) ◽  
pp. 3029-3050 ◽  
Author(s):  
David B. Brown ◽  
James E. Smith

We consider dynamic selection problems, where a decision maker repeatedly selects a set of items from a larger collection of available items. A classic example is the dynamic assortment problem with demand learning, where a retailer chooses items to offer for sale subject to a display space constraint. The retailer may adjust the assortment over time in response to the observed demand. These dynamic selection problems are naturally formulated as stochastic dynamic programs (DPs) but are difficult to solve because the optimal selection decisions depend on the states of all items. In this paper, we study heuristic policies for dynamic selection problems and provide upper bounds on the performance of an optimal policy that can be used to assess the performance of a heuristic policy. The policies and bounds that we consider are based on a Lagrangian relaxation of the DP that relaxes the constraint limiting the number of items that may be selected. We characterize the performance of the Lagrangian index policy and bound and show that, under mild conditions, these policies and bounds are asymptotically optimal for problems with many items; mixed policies and tiebreaking play an essential role in the analysis of these index policies and can have a surprising impact on performance. We demonstrate these policies and bounds in two large scale examples: a dynamic assortment problem with demand learning and an applicant screening problem. This paper was accepted by Yinyu Ye, optimization.


Author(s):  
Badr O. Johar ◽  
Surendra M. Gupta

Reverse logistics is a critical topic that has captured the attention of government, private entities and researchers in recent years. This increase in the concern was driven by current set of government regulations, increase of public awareness, and the attractive economic opportunities. Also, environmentalists have always demanded Original Equipment Manufacturers (OEMs) to be more involved and be responsible of their products at the end of its life cycle. However, the uncertainty in quality of items returned, and its quantity discourage OEMs from participating in such programs. Because of the unique problems associated and the complex nature of the reverse logistics activities, numerous studies have been carried out in this field. One of those crucial areas is inventory management of End-of-Life (EOL) products. The take back program could possibly bring financial burden to OEM if it is not managed well. Thus, an efficient yet cost effective system should be implemented to appropriately manage the overwhelming number of returns. Previously, we have analyzed the problem based on the assumption that the number of core products returned and disassembled parts and subassemblies are known in advance. In this paper, we introduce a probabilistic approach where different quality levels of for every component disassembled are considered and different probabilities of these qualities given the quality of the returned product. The model utilizes a multi-period stochastic dynamic programming in a disassembly line context to solve the problem, and generate the best option that will maximize the system total profit. A numerical example is given to illustrate the approach. Finally, directions for future research are suggested.


1987 ◽  
Vol 16 (2) ◽  
pp. 102-112 ◽  
Author(s):  
Carol L. Sarnat ◽  
Cleve E. Willis ◽  
Carolyn R. Harper

In increasing numbers, communities that rely on groundwater for drinking supplies have discovered contamination from agricultural pesticides and herbicides, road salt, underground fuel storage, and septic systems. A variety of short- and long-run remedies are available with highly uncertain outcomes. An appropriate technique for solving a benefit-cost problem of this type is a sequential decision framework using stochastic dynamic programming procedures for solution. The approach is illustrated here by means of an application to the problem of the recent contamination of the groundwater of Whately, Massachusetts by the agricultural fumigant EDB and the pesticide aldicarb.


2014 ◽  
Vol 62 (6) ◽  
pp. 1394-1415 ◽  
Author(s):  
David B. Brown ◽  
James E. Smith

Sign in / Sign up

Export Citation Format

Share Document