scholarly journals Hub Location, Routing, and Route Dimensioning: Strategic and Tactical Intermodal Transportation Hub Network Design

Author(s):  
Bariş Yıldız ◽  
Hande Yaman ◽  
Oya Ekin Karaşan

We propose a novel hub location model that jointly eliminates some of the traditional assumptions on the structure of the network and on the discount as a result of economies of scale in an effort to better reflect real-world logistics and transportation systems. Our model extends the hub literature in various facets: instead of connecting nonhub nodes directly to hub nodes, we consider routes with stopovers; instead of connecting pairs of hubs directly, we design routes that can visit several hub nodes; rather than dimensioning pairwise connections, we dimension routes of vehicles; and rather than working with a homogeneous fleet, we use intermodal transportation. Decisions pertinent to strategic and tactical hub location and transportation network design are concurrently made through the proposed optimization scheme. An effective branch-and-cut algorithm is developed to solve realistically sized problem instances and to provide managerial insights.

2019 ◽  
Vol 11 (4) ◽  
pp. 990 ◽  
Author(s):  
Dan Liu ◽  
Zhenghong Deng ◽  
Qipeng Sun ◽  
Yong Wang ◽  
Yinhai Wang

Decentralized freight decision has been proved to be one of the inhibitors to achieve a sustainable transport network. One important method also a key challenge is to determine how to coordinate and consolidate the transportation flow to get the best logistics performance. This study presents an intermodal transportation network considering freight consolidation through freight forwarders’ cooperation. We formulate the problem as a minimum intermodal transport cost model, which is a nonlinear, nonconvex and discontinuous function that involves volume economies of scale, distance economies of scale and vehicle size economies of scale. A hybrid genetic algorithm (GA) and particle swarm optimization (PSO) algorithm in combination with a batch strategy are used to solve the problem. Five different transport demand scenarios are tested on a real case on “China Railway Express” (Crexpress). The choices of reasonably corridor and fleet size combination are provided.


2011 ◽  
Vol 38 (2) ◽  
pp. 539-549 ◽  
Author(s):  
Daniele Catanzaro ◽  
Eric Gourdin ◽  
Martine Labbé ◽  
F. Aykut Özsoy

Author(s):  
Shuxia Li ◽  
Yuedan Zu ◽  
Huimin Fang ◽  
Liping Liu ◽  
Tijun Fan

The growing transportation risk of hazardous materials (hazmat) is an important threat to public safety. As an efficient and reliable mode of transportation, the multimodal hub-and-spoke transport network helps to achieve economies of scale and reduce costs. Considering the dual goals of risk and cost management of hazmat transportation, a novel optimization model of a multimodal hub-and-spoke network with detour (MHSNWD) for hazmat on the strategic level is designed. It integrates the planning of hub location and route selection based on the risk quantification for different transportation modes. Additionally, a detour strategy is applied, which allows for more than two hub nodes to be selected to form an optimal path between any supply and demand nodes in a hub-and-spoke network. Then, the risk is taken as the main objective and the cost is converted into a budget constraint to solve the model by using CPLEX. Additionally, a numerical study is conducted based on a CAB dataset to find the influence of the number of hubs and budget constraints on the optimization results. In addition, a counterpart model of the multimodal hub-and-spoke network without detour (MHSNOD) is tested to validate the advantages of the proposed model of MHSNWD. The numerical experiment shows that an appropriate increase in the number of hubs and the cost budget can remarkably reduce network risk. Compared with MHSNOD, the optimal result of MHSNWD can achieve a marginal improvement in risk reduction. This work may provide an informative decision-making reference for planning a hazmat transportation network.


2021 ◽  
Author(s):  
Borzou Rostami ◽  
Masoud Chitsaz ◽  
Okan Arslan ◽  
Gilbert Laporte ◽  
Andrea Lodi

The economies of scale in hub location is usually modeled by a constant parameter, which captures the benefits companies obtain through consolidation. In their article “Single allocation hub location with heterogeneous economies of scale,” Rostami et al. relax this assumption and consider hub-hub connection costs as piecewise linear functions of the flow amounts. This spoils the triangular inequality property of the distance matrix, making the classical flow-based model invalid and further complicates the problem. The authors tackle the challenge by building a mixed-integer quadratically constrained program and by developing a methodology based on constructing Lagrangian function, linear dual functions, and specialized polynomial-time algorithms to generate enhanced cuts. The developed method offers a new strategy in Benders-type decomposition through relaxing a set of complicating constraints in subproblems when such relaxation is tight. The results confirm the efficacy of the solution methods in solving large-scale problem instances.


2019 ◽  
Author(s):  
Thiago Gouveia Da Silva

The minimum labeling spanning tree problem (MLSTP) is a combinatorial optimization problem that consists in finding a spanning tree in a simple edge-labeled graph, i.e., a graph in which each edge has one label associated, by using a minimum number of labels. It is an NP-hard problem that has attracted substantial research attention in recent years. In its turn, the generalized minimum labeling spanning tree problem (GMLSTP) is a generalization of the MLSTP that allows the situation in which multiple labels can be assigned to an edge. Both problems have several practical applications in important areas such as computer network design, multimodal transportation network design, and data compression. The thesis addresses several connectivity problems defined over edge-labeled graphs, in special the minimum labeling spanning tree problem and its generalized version. The contributions in the work can be classified between theoretical and practical. On the theoretical side, it has introduced new useful concepts, definitions, properties and theorems regarding edge-labeled graphs, as well as a polyhedral study on the GMLSTP. On the practical side, we have proposed new heuristics and new mathematical formulations and branch-and-cut algorithms. The new approaches introduced have achieved the best results for both heuristic and exact methods in comparison with the state-of-the-art.


2021 ◽  
Vol 13 (14) ◽  
pp. 7928
Author(s):  
Songyot Kitthamkesorn ◽  
Anthony Chen ◽  
Sathaporn Opasanon ◽  
Suwicha Jaita

Park and ride (P&R) facilities provide intermodal transfer between private vehicles and public transportation systems to alleviate urban congestion. This study developed a mathematical programming formulation for determining P&R facility locations. A recently developed Weibit-based model was adopted to represent the traveler choice behavior with heterogeneity. The model’s independence of irrelevant alternatives (IIA) property was explored and used to linearize its nonlinear probability. Some numerical examples are provided to demonstrate a feature of the proposed mixed integer linear programing (MILP). The results indicate a significant impact of route-specific perception variance on the optimal P&R facility locations in a real-size transportation network.


Sign in / Sign up

Export Citation Format

Share Document