scholarly journals Comparative Tests of Shear Strength of Adhesive Lap Joints after Thermal Shocks

2021 ◽  
Vol 15 (4) ◽  
pp. 364-375
Author(s):  
Mariusz Kłonica ◽  
Radosław Bielawski ◽  
Mariusz Żokowski
Holzforschung ◽  
2010 ◽  
Vol 64 (3) ◽  
Author(s):  
Frank Stöckel ◽  
Johannes Konnerth ◽  
Wolfgang Kantner ◽  
Johann Moser ◽  
Wolfgang Gindl

Abstract The tensile shear strength of veneer lap joints was characterised. The joints were produced with an Automated Bonding Evaluation System (ABES) using urea-formaldehyde (UF) as well as melamine-urea-formaldehyde (MUF) adhesive formulated for particleboard production. At a fixed heating temperature of 110°C, a systematic increase in bond strength was observed for both adhesives with increasing cure time. The absolute bond strength was significantly higher for MUF compared to UF. Nanoindentation experiments with the same specimens used for ABES revealed a very hard, stiff and brittle character of the UF resin, whereas the MUF proved significantly less hard and stiff, and less brit-tle. Wood cell walls in contact with adhesive, i.e., where adhesive penetration into the cell wall was assumed, showed significantly altered mechanical properties. Such cell walls were harder, stiffer and more brittle than unaffected reference cell walls. These effects were slightly more pronounced for UF than for MUF. Comparing UF and MUF, the micro-mechanical properties of cured adhesive and interphase cell walls confirm earlier observations that tougher adhesives can lead to higher macroscopic bond strength. In strong contrast to that, no obvious correlation was found between micromechanical properties and the strong cure time dependence of macroscopic bond strength.


Author(s):  
VC Beber ◽  
N Wolter ◽  
B Schneider ◽  
K Koschek

For lightweight materials, e.g. aluminium, the definition of proper joining technology relies on material properties, as well as design and manufacturing aspects. Substrate thickness is especially relevant due to its impact on the weight of components. The present work compares the performance of adhesively bonded (AJ) to hybrid riveted-bonded joints (HJ) using aluminium substrates. To assess the lightweight potential of these joining methods, the effect of substrate thickness (2 and 3 mm) on the lap-shear strength (LSS) of single lap joints is investigated. An epoxy-based structural adhesive is employed for bonding, whilst HJs are produced by lockbolt rivet insertion into fully cured adhesive joints. The stiffness of joints increased with an increase of substrate thickness. HJs presented two-staged failure process with an increase in energy absorption and displacement at break. For HJs, the substrate thickness changed the failure mechanism of rivets: with thicker substrates failure occurred due to shear, whereas in thinner substrates due to rivet pulling-through. The LSS of 2 mm and 3 mm-thick AJs is similar. With 2 mm-thick substrates, the LSS of HJs was lower than AJs. In contrast, the highest LSS is obtained by the 3 mm-thick HJs. The highest lightweight potential, i.e. LSS divided by weight, is achieved by the 2 mm-thick AJs, followed by the 3 mm-thick HJs with a loss of ca. 10% of specific LSS.


2013 ◽  
Vol 31 (3) ◽  
pp. 222-229
Author(s):  
Seiji FURUSAKO ◽  
Yasunobu MIYAZAKI ◽  
Yoshiaki AKINIWA

2013 ◽  
Vol 213 (8) ◽  
pp. 1303-1310 ◽  
Author(s):  
Jian Lin ◽  
Ninshu Ma ◽  
Yongping Lei ◽  
Hidekazu Murakawa

Sign in / Sign up

Export Citation Format

Share Document