scholarly journals Ubiquitin-specific protease 9X in host cells interacts with herpes simplex virus 1 ICP0

2016 ◽  
Vol 78 (3) ◽  
pp. 405-410 ◽  
Author(s):  
Yuka SATO ◽  
Akihisa KATO ◽  
Jun ARII ◽  
Naoto KOYANAGI ◽  
Hiroko KOZUKA-HATA ◽  
...  
2013 ◽  
Vol 87 (11) ◽  
pp. 6537-6537
Author(s):  
M. Caduco ◽  
A. Comin ◽  
M. Toffoletto ◽  
D. Munegato ◽  
E. Sartori ◽  
...  

2012 ◽  
Vol 87 (1) ◽  
pp. 692-696 ◽  
Author(s):  
M. Caduco ◽  
A. Comin ◽  
M. Toffoletto ◽  
D. Munegato ◽  
E. Sartori ◽  
...  

2015 ◽  
Vol 290 (38) ◽  
pp. 22907-22918 ◽  
Author(s):  
Alexandra K. Pozhidaeva ◽  
Kareem N. Mohni ◽  
Sirano Dhe-Paganon ◽  
Cheryl H. Arrowsmith ◽  
Sandra K. Weller ◽  
...  

2020 ◽  
Vol 94 (24) ◽  
Author(s):  
Giulia Tebaldi ◽  
Suzanne M. Pritchard ◽  
Anthony V. Nicola

ABSTRACT Herpes simplex virus 1 (HSV-1) causes significant morbidity and mortality in humans worldwide. HSV-1 enters epithelial cells via an endocytosis mechanism that is low-pH dependent. However, the precise intracellular pathway has not been identified, including the compartment where fusion occurs. In this study, we utilized a combination of molecular and pharmacological approaches to better characterize HSV entry by endocytosis. HSV-1 entry was unaltered in both cells treated with small interfering RNA (siRNA) to Rab5 or Rab7 and cells expressing dominant negative forms of these GTPases, suggesting entry is independent of the conventional endo-lysosomal network. The fungal metabolite brefeldin A (BFA) and the quinoline compound Golgicide A (GCA) inhibited HSV-1 entry via beta-galactosidase reporter assay and impaired incoming virus transport to the nuclear periphery, suggesting a role for trans-Golgi network (TGN) functions and retrograde transport in HSV entry. Silencing of Rab9 or Rab11 GTPases, which are involved in the retrograde transport pathway, resulted in only a slight reduction in HSV infection. Together, these results suggest that HSV enters host cells by an intracellular route independent of the lysosome-terminal endocytic pathway. IMPORTANCE Herpes simplex virus 1 (HSV-1), the prototype alphaherpesvirus, is ubiquitous in the human population and causes lifelong infection that can be fatal in neonatal and immunocompromised individuals. HSV enters many cell types by endocytosis, including epithelial cells, the site of primary infection in the host. The intracellular itinerary for HSV entry remains unclear. We probed the potential involvement of several Rab GTPases in HSV-1 entry and suggest that endocytic entry of HSV-1 is independent of the canonical lysosome-terminal pathway. A nontraditional endocytic route may be employed, such as one that intersects with the trans-Golgi network (TGN). These results may lead to novel targets for intervention.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Longzhen He ◽  
Baocheng Wang ◽  
Yuanyuan Li ◽  
Leqing Zhu ◽  
Peiling Li ◽  
...  

The innate immune response is the first line defense against viral infections. Novel genes involved in this system are continuing to emerge. SLC15A3, a proton-coupled histidine and di-tripeptide transporter that was previously found in lysosomes, has been reported to inhibit chikungunya viral replication in host cells. In this study, we found that SLC15A3 was significantly induced by DNA virus herpes simplex virus-1(HSV-1) in monocytes from human peripheral blood mononuclear cells. Aside from monocytes, it can also be induced by HSV-1 in 293T, HeLa cells, and HaCaT cells. Overexpression of SLC15A3 in 293T cells inhibits HSV-1 replication and enhances type I and type III interferon (IFN) responses, while silencing SLC15A3 leads to enhanced HSV-1 replication with reduced IFN production. Moreover, we found that SLC15A3 interacted with MAVS and STING and potentiated MAVS- and STING-mediated IFN production. These results demonstrate that SLC15A3 participates in anti-HSV-1 innate immune responses by regulating MAVS- and STING-mediated signaling pathways.


1999 ◽  
Vol 73 (1) ◽  
pp. 417-426 ◽  
Author(s):  
Roger D. Everett ◽  
Michayla Meredith ◽  
Anne Orr

ABSTRACT Herpes simplex virus type 1 immediate-early protein Vmw110 stimulates the onset of virus infection and is required for efficient reactivation from latency. In transfection assays, Vmw110 is a potent activator of gene expression, but its mode of action has yet to be determined. Previous work has shown that Vmw110 localizes to specific intranuclear structures known as ND10, PML bodies, or PODs and causes the disruption of these domains. The ability of Vmw110 to disrupt ND10 correlates with its biological activities in infected and transfected cells. It has also been found that Vmw110 binds strongly and specifically to a ubiquitin-specific protease known as HAUSP, itself a component of a subset of ND10. In this study we have investigated the role of HAUSP in Vmw110 activity; single amino acid residues of Vmw110 required for the interaction were identified, and the effects of mutation of these residues in infected and transfected cells were then assayed. The results indicate that the ability to bind to HAUSP contributes to the functional activities of Vmw110.


Sign in / Sign up

Export Citation Format

Share Document