scholarly journals Rapid Assay Using Bovine-kidney Cell Line MDBK-SY To Identify Cattle Persistently Infected with the Bovine Viral-diarrhea Virus

2004 ◽  
Vol 57 (12) ◽  
pp. 785-788
Author(s):  
Toshiya SAITO ◽  
Katsuhiko FUKAI ◽  
Kyoichi INOUE ◽  
Mitsuo SATO
2004 ◽  
Vol 48 (2) ◽  
pp. 497-504 ◽  
Author(s):  
David Durantel ◽  
Sandra Carrouée-Durantel ◽  
Norica Branza-Nichita ◽  
Raymond A. Dwek ◽  
Nicole Zitzmann

ABSTRACT Persistent infection with hepatitis C virus (HCV) is a major cause of chronic hepatitis in humans. In chronic carriers, the viral infection induces liver damage that predisposes the patient for cirrhosis and can lead to hepatocellular carcinoma. Current chemotherapies are limited to alpha interferon (IFN-α) used either alone or in combination with ribavirin (RBV). In addition to its limited efficacy, this treatment is frequently poorly tolerated because of its side effects. The urgently needed development of new drugs is made difficult by the lack of an in vitro or in vivo infectivity model, and no cell line has been found so far to reliably and reproducibly support HCV infection. For this reason, the closely related pestivirus bovine viral diarrhea virus (BVDV) has sometimes been used as a surrogate in vitro infectivity model. In this study we used an MDBK cell line persistently infected with noncytopathic BVDV to assess the antiviral effect of IFN-α and RBV, the two drugs currently in clinical use against HCV. The same system was then used to evaluate the potential of two classes of iminosugar derivates to clear noncytopathic BVDV infection from MDBK cells. We show that treatment with long-alkyl-chain deoxynojirimycin derivatives, which are inhibitors of the endoplasmic reticulum (ER)-resident α-glucosidases, can greatly reduce the amount of secreted enveloped viral RNA. Long-alkyl-chain deoxygalactonojirimycin derivatives, which do not inhibit ER α-glucosidases, were less potent but still more effective in this system than IFN-α or ribavirin.


2021 ◽  
Author(s):  
aspen.workman not provided ◽  
mike.heaton not provided ◽  
Dennis A. Webster ◽  
Gregory P Harhay ◽  
Tim Smith ◽  
...  

Bovine viral diarrhea virus (BVDV) entry into bovine cells involves attachment of virions to cellular receptors, internalization, and pH-dependent fusion with endosomal membranes. The primary host receptor for BVDV is CD46; however, the complete set of host factors required for virus entry is unknown. The Madin-Darby bovine kidney (MDBK) cell line is susceptible to BVDV infection, while a derivative cell line (CRIB) is resistant at the level of virus entry. We performed complete genome sequencing of each to identify genomic variation underlying the resistant phenotype with the aim of identifying host factors essential for BVDV entry. Three large compound deletions in the BVDV-resistant CRIB cell line were identified and predicted to disrupt the function or expression of the genesPTPN12,GRID2, andRABGAP1L. However, CRISPR/Cas9 mediated knockout of these genes, individually or in combination, in the parental MDBK cell line did not impact virus entry or replication. Therefore, resistance to BVDV in the CRIB cell line is not due to the apparent spontaneous loss ofPTPN12,GRID2, orRABGAP1Lgene function. Identifying the functional cause of BVDV resistance in the CRIB cell line may require more detailed comparisons of the genomes and epigenomes.


2015 ◽  
Vol 3 (5) ◽  
Author(s):  
Bora Nam ◽  
Ganwu Li ◽  
Ying Zheng ◽  
Jianqiang Zhang ◽  
Kathleen M. Shuck ◽  
...  

A high-passage rabbit kidney RK-13 cell line (HP-RK-13[KY], originally derived from the ATCC CCL-37 cell line) used in certain laboratories worldwide is contaminated with noncytopathic bovine viral diarrhea virus (ncpBVDV). On complete genome sequence analysis, the virus strain was found to belong to BVDV group 1b.


2020 ◽  
Vol 103 (3) ◽  
pp. 560-571 ◽  
Author(s):  
Hanah M Georges ◽  
Katie J Knapek ◽  
Helle Bielefeldt-Ohmann ◽  
Hana Van Campen ◽  
Thomas R Hansen

Abstract Bovine viral diarrhea virus continues to cost the cattle industry millions of dollars each year despite control measures. The primary reservoirs for bovine viral diarrhea virus are persistently infected animals, which are infected in utero and shed the virus throughout their lifetime. The difficulty in controlling the virus stems from a limited understanding of transplacental transmission and fetal development of immunotolerance. In this study, pregnant bovine viral diarrhea virus naïve heifers were inoculated with bovine viral diarrhea virus on day 75 of gestation and fetal spleens were collected on gestational days 82, 97, 190, and 245. Microarray analysis on splenic RNA from days 82 and 97 revealed an increase in signaling for the innate immune system and antigen presentation to T cells in day 97 persistently infected fetuses compared to controls. Reverse transcription quantitative polymerase chain reaction on select targets validated the microarray revealing a downregulation of type I interferons and lymphocyte markers in day 190 persistently infected fetuses compared to controls. Protein was visualized using western blot and tissue sections were analyzed with hematoxylin and eosin staining and immunohistochemistry. Data collected indicate that fetal immunotolerance to bovine viral diarrhea virus developed between days 97 and 190, with mass attenuation of the immune system on day 190 of gestation. Furthermore, lymphocyte transcripts were initially unchanged then downregulated, suggesting that immunotolerance to the virus stems from a blockage in lymphocyte activation and hence an inability to clear the virus. The identification of lymphocyte derived immunotolerance will aid in the development of preventative and viral control measures to implement before or during pregnancy.


Sign in / Sign up

Export Citation Format

Share Document