NUMERICAL ANALYSIS OF CAVITATION SUSCEPTIBILITY FOR STEAM GENERATOR INTEGRAL PREHEATER TUBES

2014 ◽  
Vol 3 (01) ◽  
pp. 37-46 ◽  
Author(s):  
S. Laroche ◽  
L. Sun ◽  
J. Pietralik

A new tube degradation mechanism was observed in a recirculating steam generator (SG) with an integral preheater tube at the clearance gap between the tube and the preheater baffle. The general pattern of the damage and material composition in the degraded region suggested that the degradation was cavitation erosion. Cavitation erosion occurs when vapour bubbles exist or form in the flowing liquid and then these bubbles collapse violently in the vicinity of a solid wall. The bubbles collapse when they contact water that is sufficiently subcooled, i.e., below the saturation temperature. In the clearance gap between the tube and the preheater baffle, secondary fluid flow exists due to the pressure difference across the baffle plate. Meanwhile, heat transfer occurs from the primary-side fluid to the secondary-side fluid within this clearance gap, driven by the primary-to-secondary temperature difference. Factors such as the tube position in the baffle hole and fouling may influence the local flow and heat transfer conditions and can cause subcooled boiling that results in cavitation. This paper presents a numerical analysis of flow and heat transfer phenomena to determine the factors contributing to cavitation erosion of tubes in the preheater of a recirculating SG. The analysis used the THIRST code for a 3-dimensional thermalhydraulic simulation of steam generator and the ANSYS Fluent® code for detailed calculations of flow and heat transfer in the clearance gaps. A detailed temperature distribution in the gap was obtained using this analysis to determine the regions where subcooled boiling could occur by comparing the local fluid temperature with its saturation temperature. The susceptibility to cavitation was found to increase with increased inclination (i.e., tilt) and eccentricity (i.e., off-centre) of the tube in the baffle plate gap, and increased fouling on baffle plate surfaces. This methodology could be applied to analyze the cavitation susceptibility for other preheater types with this “tube to baffle plate” gap, as these preheaters might have conditions where boiling followed by the rapid condensation of the steam bubbles are present.

2022 ◽  
Vol 171 ◽  
pp. 107248
Author(s):  
L.Y. Zhang ◽  
R.J. Duan ◽  
Y. Che ◽  
Z. Lu ◽  
X. Cui ◽  
...  

2018 ◽  
Vol 330 ◽  
pp. 59-71 ◽  
Author(s):  
Ronghua Chen ◽  
Kailun Guo ◽  
Yanshi Zhang ◽  
Wenxi Tian ◽  
Suizheng Qiu ◽  
...  

2015 ◽  
Vol 7 (3) ◽  
pp. 369-386 ◽  
Author(s):  
K. Vajravelu ◽  
K. V. Prasad ◽  
S. R. Santhi

AbstractAn analysis is carried out to study the magnetohydrodynamic (MHD) flow and heat transfer characteristics of an electrically conducting dusty non-Newtonian fluid, namely, the upper convected Maxwell (UCM) fluid over a stretching sheet. The stretching velocity and the temperature at the surface are assumed to vary linearly with the distance from the origin. Using a similarity transformation, the governing nonlinear partial differential equations of the model problem are transformed into coupled non-linear ordinary differential equations and the equations are solved numerically by a second order finite difference implicit method known as the Keller-box method. Comparisons with the available results in the literature are presented as a special case. The effects of the physical parameters on the fluid velocity, the velocity of the dust particle, the density of the dust particle, the fluid temperature, the dust-phase temperature, the skin friction, and the wall-temperature gradient are presented through tables and graphs. It is observed that, Maxwell fluid reduces the wall-shear stress. Also, the fluid particle interaction reduces the fluid temperature in the boundary layer. Furthermore, the results obtained for the flow and heat transfer characteristics reveal many interesting behaviors that warrant further study on the non-Newtonian fluid flow phenomena, especially the dusty UCM fluid flow phenomena.


Sign in / Sign up

Export Citation Format

Share Document