Numerical analysis of the effect of hot dent infusion jet on the fluid flow and heat transfer rate through the microchannel in the presence of external magnetic field

Author(s):  
Esmaeil jalali ◽  
S. Mohammad Sajadi ◽  
Ferial Ghaemi ◽  
Dumitru Baleanu
2018 ◽  
Vol 16 ◽  
pp. 12-20
Author(s):  
Houssem Laidoudi ◽  
Oluwole Daniel Makinde

In this paper, we numerically examine the mixed convective flow around a confined tandem heated circular cylinders embedded in a vertical channel in order to determine exactly the effects of opposing thermal buoyancy and distance between cylinders (S) on the behavior of fluid flow and heat transfer rate. The dimensionless governing equations involving momentum, continuity and energy are obtained and solved in a steady laminar flow regime for the conditions:Re= 5 to 40 andS= 0 to 5d, at fixed values of Prandtl numberPr= 1, Richardson numberRi= 1 and blockage ratioβ= 1/5. The fluid flow and temperature field are illustrated in terms of streamline and isotherm contours. The average Nusselt number is also computed to quantify the effect of fluid flow and heat transfer characteristics on amount of heat transfer rate.


Author(s):  
Mostafa Hossein Saeidi ◽  
Ali Bagheri ◽  
Mehdi Ghamati ◽  
Mohsen Javanmard ◽  
Mohammad Hasan Taheri

In this study, the heat transfer of a laminar, steady, fully developed, and Newtonian fluid flow in a channel is investigated. The main goal of the present study is solving the hydromagnetic Newtonian fluid flow and heat transfer inside a channel with the angular magnetic field and convective boundary conditions on the walls. As a novelty, the effect of thermal diffusion and advection term the walls and Joule heating in the energy equation has been considered. The governing equations include the continuity, momentum, and energy are presented, and considering the assumptions are simplified. Afterward, employing the dimensionless parameters, the governing equations are transformed into dimensionless forms. The exact solution is provided for the momentum equation. For solving the full energy equation, the analytical collocation method (CM) is conducted. The results are validated using the 4th order Runge-Kutta method. The results demonstrated that the dimensionless velocity, the bulk temperature inside the channel, and the channel wall's heat transfer rate decline when the Hartmann number and the magnetic field angle increase. Since the Prandtl and Eckert numbers reduce, the dimensionless temperature becomes more uniform, and the heat transfer rate on the channel wall decreases. Since the Biot number augments, the dimensionless temperature inside the channel reduces, but the channel wall's heat transfer rate first increases and then reduces.


2016 ◽  
Vol 34 (2) ◽  
pp. 427-436 ◽  
Author(s):  
M. Margabandhu ◽  
S. Sendhilnathan ◽  
S. Senthilkumar ◽  
K. Hirthna

AbstractManganese substituted cobalt ferrite (Co1–xMnxFe2O4 with x = 0, 0.3, 0.5, 0.7 and 1) nanopowders were synthesized by chemical coprecipitation method. The synthesized magnetic nanoparticles were investigated by various characterization techniques, such as X-ray diffraction (XRD), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM) and thermogravimetric and differential thermal analysis (TG/DTA). The XRD results confirmed the presence of cubic spinel structure of the prepared powders and the average crystallite size of magnetic particles ranging from 23 to 45 nm. The VSM results showed that the magnetic properties varied with an increase in substituted manganese while SEM analysis showed the change in the morphology of obtained magnetic nanoparticles. The TG/DTA analysis indicated the formation of crystalline structure of the synthesized samples. The heat transfer rate was measured in specially prepared magnetic nanofluids (nanoparticles dispersed in carrier fluid transformer oil) as a function of time and temperature in presence of external magnetic fields. The experimental analysis indicated enhanced heat transfer rate of the magnetic nanofluids which depended upon the strength of external magnetic field and chemical composition.


2022 ◽  
Vol 171 ◽  
pp. 107248
Author(s):  
L.Y. Zhang ◽  
R.J. Duan ◽  
Y. Che ◽  
Z. Lu ◽  
X. Cui ◽  
...  

2019 ◽  
Vol 29 (4) ◽  
pp. 1466-1489 ◽  
Author(s):  
Mohammadhossein Hajiyan ◽  
Shohel Mahmud ◽  
Mohammad Biglarbegian ◽  
Hussein A. Abdullah ◽  
A. Chamkha

Purpose The purpose of this paper is to investigate the convective heat transfer of magnetic nanofluid (MNF) inside a square enclosure under uniform magnetic fields considering nonlinearity of magnetic field-dependent thermal conductivity. Design/methodology/approach The properties of the MNF (Fe3O4+kerosene) were described by polynomial functions of magnetic field-dependent thermal conductivity. The effect of the transverse magnetic field (0 < H < 105), Hartmann Number (0 < Ha < 60), Rayleigh number (10 <Ra <105) and the solid volume fraction (0 < φ < 4.7%) on the heat transfer performance inside the enclosed space was examined. Continuity, momentum and energy equations were solved using the finite element method. Findings The results show that the Nusselt number increases when the Rayleigh number increases. In contrast, the convective heat transfer rate decreases when the Hartmann number increases due to the strong magnetic field which suppresses the buoyancy force. Also, a significant improvement in the heat transfer rate is observed when the magnetic field is applied and φ = 4.7% (I = 11.90%, I = 16.73%, I = 10.07% and I = 12.70%). Research limitations/implications The present numerical study was carried out for a steady, laminar and two-dimensional flow inside the square enclosure. Also, properties of the MNF are assumed to be constant (except thermal conductivity) under magnetic field. Practical implications The results can be used in thermal storage and cooling of electronic devices such as lithium-ion batteries during charging and discharging processes. Originality/value The accuracy of results and heat transfer enhancement having magnetic field-field-dependent thermal conductivity are noticeable. The results can be used for different applications to improve the heat transfer rate and enhance the efficiency of a system.


Author(s):  
Gustavo Gutierrez ◽  
Ezequiel Medici

The interaction between magnetic fields and convection is an interesting phenomenon because of its many important engineering applications. Due to natural convection motion the electric conductive fluid in a magnetic field experiences a Lorenz force and its effect is usually to reduce the flow velocities. A magnetic field can be used to control the flow field and increase or reduce the heat transfer rate. In this paper, the effect of a magnetic field in a natural convection flow of an electrically conducting fluid in a rectangular cavity is studied numerically. The two side walls of the cavity are maintained at two different constant temperatures while the upper wall and the lower wall are completely insulated. The coupling of the Navier-Stokes equations with the Maxwell equations is discussed with the assumptions and main simplifications assumed in typical problems of magnetohydrodynamics. The nonlinear Lorenz force generates a rich variety of flow patterns depending on the values of the Grashof and Hartmann numbers. Numerical simulations are carried out for different Grashof and Hartmann numbers. The effect of the magnetic field on the Nusselt number is discussed as well as how convection can be suppressed for certain values of the Hartmann number under appropriate direction of the magnetic field.


Sign in / Sign up

Export Citation Format

Share Document