dust particle
Recently Published Documents


TOTAL DOCUMENTS

508
(FIVE YEARS 96)

H-INDEX

37
(FIVE YEARS 6)

Author(s):  
E.Y. Chen ◽  
Peter Renner ◽  
K. Lee ◽  
Bing Guo ◽  
Hong Liang

Abstract Solar panel cleaning is important to maintain the efficiency of energy production. In this research, we investigated the effects of relative humidity and condensation on the effectiveness of cleaning. The dust particles are subjected to various forces once they are deposited on the surface of a solar panel. When the dust particles continue to build up, they are also subjected to the adhesion forces from the neighboring dust particles. The adhesion forces from the substrates and the neighboring particles are dependent on the ambient conditions. Fundamentally, the interaction between the adhesion force of particle-particle and particle-substrate under various conditions was discussed in this manuscript.


2021 ◽  
Author(s):  
Shuo Wang ◽  
Ning Zhang ◽  
Shun-xin Zhang ◽  
Miao Tian ◽  
Ya-wen Cai ◽  
...  

Abstract Using a dusty plasma ratchet, one can realize the rectification of charged dust particle in a plasma. To obtain the ratchet potential dominating the rectification, here, we perform quantitative simulations based on a two-dimensional fluid model of capacitively coupled plasma. Plasma parameters are firstly calculated in two typical cross sections of the dusty plasma ratchet which cut vertically the saw channel at different azimuthal positions. The balance positions of charged dust particle in the two cross sections then can be found exactly. The electric potentials at the two balance positions have different values. Using interpolation in term of a double-sine function from previous experimental measurement, an asymmetrical ratchet potential along the saw channel is finally obtained. The asymmetrical orientation of the ratchet potential depends on discharge conditions. Quantitative simulations further reproduce our previous experimental phenomena such as the rectification of dust particle in the dusty plasma ratchet.


2021 ◽  
Author(s):  
H. Davari ◽  
B. Farokhi ◽  
M. Ali Asgarian

Abstract A particle-in-cell simulation is modeled and run on a dusty plasma to determine the effect of the magnetic field on the process dust-particle charging through electron-ion plasma. The electric field is solved through the Poisson equation, and the electron-neutral elastic scattering, excitation, and ionization processes are modeled through Monte Carlo collision method. The effects obderved from the initial density of the plasma, the initial temperature of the electrons, and the changing magnetic field are included in this simulation model. In the dust particle charging process, saturation time and saturation charge are compared. An increase in the magnetic field cannot reduce time to reach the saturation state. Determinig the magnetic field boundaries which depend on the physical properties of the plasma, which can be contributive in some areas of dusty(complex) plasma. The applications of the results obtaind here for fusion plasma conditions and space and laboratory plasmas are discussed. The results here can be applied in future simulation models with a focus on the dust particle movement and their effect on plasma, leading to the modeling of different astrophysical plasmas thorough laboratory experiments.


2021 ◽  
Vol 2 ◽  
pp. 100023
Author(s):  
Roland Kufre Etim ◽  
David Ufot Ekpo ◽  
Imoh Christopher Attah ◽  
Kennedy Chibuzor Onyelowe

Author(s):  
Igor B Denysenko ◽  
Maxime Mikikian ◽  
Nikolai Azarenkov

Abstract The charge and dynamics of dust particles in an afterglow plasma are studied using a 1D model in the diffusion approximation, taking into account the transition from ambipolar to free diffusion. It is analyzed how external conditions (dust particle size, neutral gas pressure and initial electron density) affect the dust motion. The dust particle dynamics has been examined in microgravity conditions and in presence of gravity. Without gravity, the location of dust particles in plasma volume may change essentially during the afterglow if the dust size and pressure are small (≤ 10 nm and ≤ 30 mTorr, respectively). At small pressures, in the very beginning of afterglow, small nanoparticles move to the plasma boundary because the ion drag force dominates over the electric force. At afterglow times when the electron temperature becomes time-independent, the ion drag force decreases faster with time than the electric force due to the ion density decrease, and dust particles may move to the slab center. In presence of gravity, the effect of gravity force on dust particles is important only at large afterglow times (t ≥ 10 ms), when the electric and ion drag forces are small. The dust dynamics depends essentially on the initial plasma density. If the density is large (~ 1012 cm-3), small nanoparticles (≤ 10 nm) may deposit on plasma walls in the beginning of plasma afterglow because of an enhancement of the ion drag force.


2021 ◽  
pp. 105346
Author(s):  
Yemeng Wang ◽  
Kim-Chiu Chow ◽  
Jing Xiao ◽  
Chi-Fong Wong
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document