scholarly journals Effects of Molecular Weight Distribution on the Thermal Properties of Side-Chain Liquid Crystalline Poly(vinyl ether)s

1988 ◽  
Vol 20 (10) ◽  
pp. 923-931 ◽  
Author(s):  
Toshihiro Sagane ◽  
Robert W Lenz
e-Polymers ◽  
2014 ◽  
Vol 14 (2) ◽  
pp. 139-144 ◽  
Author(s):  
Huifang Zhao ◽  
Yinbang Zhu ◽  
Lizheng Sha

AbstractFiber classification of aramid fibrids was carried out using a Bauer-McNett fiber classifier, and the molecular weight and thermal properties of different sizes of aramid fibrids were determined with viscometry and differential scanning calorimetry (DSC), respectively. Aramid handsheets were made from different sizes of aramid fibrids and aramid short fibers, and the relationship between mechanical strength of aramid handsheets and thermal properties of aramid fibrids was examined. In addition, aramid papers from four different sources were also investigated to elucidate the relationship between their thermal properties and mechanical strength. It was found that aramid fibrids passing through 30-mesh screens and remaining on 50-mesh screens and aramid fibrids with narrower molecular weight distribution are suitable for the production of high-strength aramid papers. Lower crystallinity and wider molecular weight distribution are important contributors to the lower mechanical strength of domestic aramid paper when compared to that of Nomex paper.


Sign in / Sign up

Export Citation Format

Share Document