scholarly journals IMPROVING ENERGY EFFICIENCY OF SILICON CARBIDE CERAMICS PRODUCTION BY BATCH REGULATION

2015 ◽  
Vol 3 ◽  
pp. 461-467
Author(s):  
Dmitriy Zhukov ◽  
Nikolay Makarov ◽  
Maria Vartanyan ◽  
Tatiana Guseva

The article discusses an energy-efficient method for producing SiC-based composites via doping with oxide eutectic compositions and batch granulometry regulation. The influence of batch granulometry on physico-mechanical properties of ceramics is studied, and fractions ratio is determined allowing us to obtain a dense material with improved strength and fracture toughness. Such ceramics shows excellent mechanical behavior and holds much promise as a structural and armor material.

2007 ◽  
Vol 336-338 ◽  
pp. 1409-1413 ◽  
Author(s):  
Young Wook Kim ◽  
Yong Seong Chun ◽  
Sung Hee Lee ◽  
Ji Yeon Park ◽  
Toshiyuki Nishimura ◽  
...  

There has been a great progress in the development of heat-resistant silicon carbide ceramics, owing to the better understanding of composition-microstructure-properties relations. Based on the progress, it has been possible to fabricate heat-resistant SiC ceramics with improved fracture toughness. In this paper, three rare-earth oxides (Re2O3, Re=Er, Lu, and Sc) in combination with AlN were used as sintering additives for a β-SiC containing 1 vol% α-SiC seeds. The effect of intergranular phase, using Re2O3 and AlN as sintering additives, on the microstructure and mechanical properties of liquid-phasesintered, and subsequently annealed SiC ceramics were investigated. The microstructure and mechanical properties were strongly influenced by the sintering additive composition, which determines the chemistry and structure of IGP. The strength and fracture toughness of the Lu2O3-doped SiC were ∼700 MPa at 1400oC and ∼6 MPa.m1/2 at room temperature, respectively. The beneficial effect of the new additive compositions on high-temperature strength was attributed to the crystallization of the intergranular phase.


2012 ◽  
Vol 27 (9) ◽  
pp. 965-969
Author(s):  
Xiao YANG ◽  
Xue-Jian LIU ◽  
Zheng-Ren HUANG ◽  
Gui-Ling LIU ◽  
Xiu-Min YAO

2000 ◽  
Vol 43 (9) ◽  
pp. 813-818 ◽  
Author(s):  
J Martı́nez-Fernández ◽  
F.M Valera-Feria ◽  
M Singh

2004 ◽  
Vol 818 ◽  
Author(s):  
R. O. Ritchie ◽  
X.-F. Zhang ◽  
L. C. De Jonghe

AbstractThrough control of the grain-boundary structure, principally in the nature of the nanoscale intergranular films, a silicon carbide with a fracture toughness as high as 9.1 MPa.m1/2 has been developed by hot pressing β-SiC powder with aluminum, boron, and carbon additions (ABC-SiC). Central in this material development has been systematic transmission electron microscopy (TEM) and mechanical characterizations. In particular, atomic-resolution electron microscopy and nanoprobe composition quantification were combined in analyzing grain boundary structure and nanoscale structural features. Elongated SiC grains with 1 nm-wide amorphous intergranular films were believed to be responsible for the in situ toughening of this material, specifically by mechanisms of crack deflection and grain bridging. Two methods were found to be effective in modifying microstructure and optimizing mechanical performance. First, prescribed post-annealing treatments at temperatures between 1100 and 1500°C were seen to cause full crystallization of the amorphous intergranular films and to introduce uniformly dispersed nanoprecipitates within SiC matrix grains; in addition, lattice diffusion of aluminum at elevated temperatures was seen to alter grain-boundary composition. Second, adjusting the nominal content of sintering additives was also observed to change the grain morphology, the grain-boundary structure, and the phase composition of the ABC-SiC. In this regard, the roles of individual additives in developing boundary microstructures were identified; this was demonstrated to be critical in optimizing the mechanical properties, including fracture toughness and fatigue resistance at ambient and elevated temperatures, flexural strength, wear resistance, and creep resistance.


2009 ◽  
Vol 15 (6) ◽  
pp. 937-941 ◽  
Author(s):  
Myong-Hoon Roh ◽  
Young-Wook Kim ◽  
Wonjoong Kim ◽  
Toshiyuki Nishimura ◽  
Won-Seon Seo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document