scholarly journals Dynamic Economic Dispatch On Micro Grid Electrical Systems Using Quadratic Programming

Author(s):  
Heri Suryoatmojo

Currently the needs of electric power increased rapidly along with the development of technology. The increase in power requirements is contrary to the availability of sources of energy depletion of oil and coal. This problem affects the national electrical resistance. To meet the needs of large electric power with wide area coverage is required small scale distributed power generation. This distributed generation (DG) of renewable energy sources sought to minimize the use of energy resources such as oil and coal and connected to the micro grid and use the battery as a power balance. Because of there are many DGs and the use of batteries, therefore it is important to determine the optimal power generation of each plant as well as the use of battery based on the optimal capacity so that requirement of electric power can be met with minimal cost each time. This optimization is known as Dynamic Economic Dispatch. In this study, the methods of Quadratic Programming is required to solve the optimization problem.

Micro-grid is a potential solution for the integration and management of renewable energy generation. Power generation through renewable energy sources has become more preferential and cost-effective, by articulating small scale distributed energy resources, micro-grids are becoming an alternative method in electrical power generation at the distribution voltage level. The increment of nonlinear loads and power electronic interfaced distribution generation system (DG) in the grid creates power quality issues like harmonic distortions in the distributed power system [6] [18]. The microgrid proposed in this paper consists of a photovoltaic array which represents the main generation unit and a three-phase induction generator that supplements the variable power generated by the photovoltaic array; a battery bank is included in the micro-grid to reduce the burden of the power generated by the micro-grid during the peak period [19] [20]. The power electronic interface maintains the necessary adaptability, security and reliability of operation between renewable sources and the distribution system [18]. In this paper, a comprehensive survey on micro-grid to improve the power quality parameters like THD is taken as the main objective with the help of suitable hybrid optimization algorithm, harmonic filters, controllers and battery storage.


Author(s):  
Ayani Nandi ◽  
Vikram Kumar Kamboj

AbstractConventional unit commitment problem (UCP) consists of thermal generating units and its participation schedule, which is a stimulating and significant responsibility of assigning produced electricity among the committed generating units matter to frequent limitations over a scheduled period view to achieve the least price of power generation. However, modern power system consists of various integrated power generating units including nuclear, thermal, hydro, solar and wind. The scheduling of these generating units in optimal condition is a tedious task and involves lot of uncertainty constraints due to time carrying weather conditions. This difficulties come to be too difficult by growing the scope of electrical power sector day by day, so that UCP has connection with problem in the field of optimization, it has both continuous and binary variables which is the furthermost exciting problem that needs to be solved. In the proposed research, a newly created optimizer, i.e., Harris Hawks optimizer (HHO), has been hybridized with sine–cosine algorithm (SCA) using memetic algorithm approach and named as meliorated Harris Hawks optimizer and it is applied to solve the photovoltaic constrained UCP of electric power system. In this research paper, sine–cosine Algorithm is used for provision of power generation (generating units which contribute in electric power generation for upload) and economic load dispatch (ELD) is completed by Harris Hawks optimizer. The feasibility and efficacy of operation of the hybrid algorithm are verified for small, medium power systems and large system considering renewable energy sources in summer and winter, and the percentage of cost saving for power generation is found. The results for 4 generating units, 5 generating units, 6 generating units, 7 generating units, 10 generating units, 19 generating units, 20 generating units, 40 generating units and 60 generating units are evaluated. The 10 generating units are evaluated with 5% and 10% spinning reserve. The efficacy of the offered optimizer has been verified for several standard benchmark problem including unit commitment problem, and it has been observed that the suggested optimizer is too effective to solve continuous, discrete and nonlinear optimization problems.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2182 ◽  
Author(s):  
Alessandro Rosini ◽  
Alessandro Palmieri ◽  
Damiano Lanzarotto ◽  
Renato Procopio ◽  
Andrea Bonfiglio

The new electric power generation scenario, characterized by growing variability due to the greater presence of renewable energy sources (RES), requires more restrictive dynamic requirements for conventional power generators. Among traditional power generators, gas turbines (GTs) can regulate the output electric power faster than any other type of plant; therefore, they are of considerable interest in this context. In particular, the dynamic performance of a GT, being a highly nonlinear and complex system, strongly depends on the applied control system. Proportional–integral–derivative (PID) controllers are the current standard for GT control. However, since such controllers have limitations for various reasons, a model predictive control (MPC) was designed in this study to enhance GT performance in terms of dynamic behavior and robustness to model uncertainties. A comparison with traditional PID-based controllers and alternative model-based control approaches (feedback linearization control) found in the literature demonstrated the effectiveness of the proposed approach.


2017 ◽  
Author(s):  
Paul E. Slaboch ◽  
Jillian Coday

A small scale horizontal Archimedean screw was designed, built, and tested for small-scale electric power generation. The small-scale device is suitable for deployment in shallow waterways and rivers. The design of the screw is environmentally friendly and allows for fish and other aquatic life to pass through harmlessly. A series of horizontal screws were designed over a range of blade pitch and tip conditions to determine the most efficient configuration of the device. The tip conditions included straight, flanged, and open. The device was placed both inside and outside of a duct to control tip conditions. The flanged condition added material to the tip of the device to simulate a partially ducted screw. Preliminary studies have shown that the straight bladed screw is the most efficient design. Preliminary data also show that the addition of a duct reduced the overall efficiency of the device. The flange feature on the screw was shown to be ineffective as well. However, the design was environmentally friendly and would provide electric power on a small scale without harm to local aquatic environments.


Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 181 ◽  
Author(s):  
F. Daniel Santillán-Lemus ◽  
Hertwin Minor-Popocatl ◽  
Omar Aguilar-Mejía ◽  
Ruben Tapia-Olvera

Due to the opening of the energy market and agreements for the reduction of pollution emissions, the use of microgrids attracts more attention in the scientific community, but the management of the distribution of electricity has new challenges. This paper considers different distributed generation systems as a main part to design a microgrid and the resources management is defined in a period through proposed dynamic economic dispatch approach. The inputs are obtained by the model predictive control algorithm considering variations of both pattern of consumption and generation systems capacity, including conventional and renewable energy sources. Furthermore, the proposed approach considers a benefits program to customers involving a demand restriction and the costs of regeneration of the pollutants produced by conventional generation systems. The dispatch strategy through a mathematical programming approach seeks to reduce to the minimum the fuel cost of conventional generators, the energy transactions, the regeneration of polluted emissions and, finally, includes the benefit in electricity demand reduction satisfying all restrictions through mathematical programming strategy. The model is implemented in LINGO 17.0 software (Lindo Systems, 1415 North Dayton Street, Chicago, IL, USA). The results exhibit the proposed approach effectiveness through a study case under different considerations.


Sign in / Sign up

Export Citation Format

Share Document