scholarly journals Effects of Rhythmic Exercise Using a Balance Ball on Parkinsonism in Binswanger Disease

2014 ◽  
Vol 17 (1) ◽  
pp. 54-54
Author(s):  
Mio KONDO ◽  
Yasuhiro IWATA ◽  
Yuki IIDA ◽  
Otone ENDO
1992 ◽  
Vol 263 (4) ◽  
pp. H1078-H1083 ◽  
Author(s):  
M. J. Joyner ◽  
L. A. Nauss ◽  
M. A. Warner ◽  
D. O. Warner

This study tested the effects of sympathetically mediated changes in blood flow to active muscles on muscle O2 uptake (VO2) in humans. Four minutes of graded (15-80% of maximum voluntary contraction, MVC) rhythmic handgrip exercise were performed. Forearm blood flow (FBF) (plethysmography) and deep vein O2 saturation were measured each minute. Forearm O2 uptake was calculated using the Fick principle. In protocol 1, exercise was performed while supine and again while upright to augment sympathetic outflow to the active muscles. Standing reduced FBF at rest from 3.6 to 2.2 ml.100 ml-1.min-1 (P < 0.05). During light exercise (15-40% MVC) FBF was unaffected by body position. Standing reduced FBF (P < 0.05) from 36.0 to 25.2 ml.100 ml-1.min-1 and forearm VO2 from 38.2 to 28.1 ml.kg-1.min-1 during the final work load. In protocol 2, exercise was performed while supine before and after local anesthetic block of the sympathetic nerves to the forearm. Sympathetic block increased FBF at rest from 3.1 to 8.9 ml.100 ml-1.min-1 (P < 0.05), and FBF was higher during all work loads At 70-80% of MVC sympathetic block increased FBF from 35.4 to 50.7 ml.100 ml-1.min-1 (P < 0.05), and forearm VO2 from 45.5 to 54.2 ml.kg-1.min-1 (P < 0.05). These results suggest that in humans sympathetic nerves modulate blood flow to active muscles during light and heavy rhythmic exercise and that this restraint of flow can limit O2 uptake in muscles performing heavy rhythmic exercise.


Author(s):  
Hanieh Berahman ◽  
Alireza Elmieh ◽  
Mohammad Reza Fadaei chafy

Abstract Objectives The present study aimed to explore the effect of water-based rhythmic exercise training on fasting blood sugar (FBS), homeostatic model assessment (HOMA), insulin, thyroid stimulating hormone (TSH), and T4 in postmenopausal women with metabolic syndrome. Methods In this clinical trial, 31 postmenopausal woman with metabolic syndrome aged 69.16 ± 2.02 years were randomly assigned to an experimental (n=16) and a control group (n=15). The training program was composed of 12 weeks of water-based rhythmic exercise training performed intermittently for 60 min three times a week. Before and after training, blood was analyzed for glucose homeostasis, T4, and TSH. Data were subjected to analysis by paired t-test and covariance analysis at the p<0.05 level. Results The exercise training intervention reduced the FBS and insulin significantly (p=0.000). The growth hormone (GH) index was increased significantly only in the experimental group (p=0.037) whereas no significant variations occurred in the insulin-like growth factor-1 (p=0.712). It was also found that TSH and T4 change in the experimental group as compared to the pre-test. Conclusions Water-based rhythmic exercise training may improve blood glucose homeostasis, TSH, and T4.


Neurology ◽  
2001 ◽  
Vol 56 (5) ◽  
pp. 610-610 ◽  
Author(s):  
C. Valencia ◽  
J. Marti-Fabregas ◽  
J. P. Nuez ◽  
J.-L. Marti-Vilalta

Sign in / Sign up

Export Citation Format

Share Document