Molecular Radius, Molar Refraction, Polarizability and Internal Pressure Studies on THP + 1-Hexanol at Different Temperatures – Molecular Interactions

2014 ◽  
Vol 2 (11) ◽  
pp. 523-530
Author(s):  
Anil kumar Koneti ◽  
Srinivasu Chintalapati
2015 ◽  
Vol 3 (2) ◽  
Author(s):  
Anil Kumar K. ◽  
Srinivasu Ch. ◽  
Siva Rama Krishna J. ◽  
Jitendra M.S.N.V.

Refractive indices and molar volume of binary liquid mixture of 1, 4-dioxane with 1-butanol were measured over the entire composition range at T= (298.15, 303.15, 308.15, 313.15 & 318) K using Anton Paar and Abbemat Refractometer. Basing empirical formulae and the measured data were utilized to evaluate the molar refraction (Rm), molecular radii (r), internal pressure (pi) along with their excess parameters. The computed results of RmE, rE and piE were fitted to the Redlich–Kister polynomial equation and focused on the molecular interactions present in the mixture.


2017 ◽  
Vol 07 (04) ◽  
Author(s):  
SK Beebi ◽  
SKM Nayeem ◽  
GR Satyanarayana ◽  
A Venkateshwara Rao ◽  
D Bala ◽  
...  

Author(s):  
Baljeet Singh Patial

Ultrasonic velocities (u), densities (ρ) and viscosities (η) are measured in respect of ethylmethylketone (EMK) and N,N-dimethylformamide (DMF) over the entire composition at 298, 308and 318K. Attempt have been made to extract the information with respect to various kind of intermolecular interactions, such as H-bonding, dipole-dipole, solute –solvent, dispersion type interactions existing between these two components from the following acoustical parameter when examined as a function of solvent composition at different temperatures: adiabatic compressibility (β), specific acoustic impedance (Z), intermolecular free length (Lf), molar sound velocity (Rm), wada’s constant (W), viscous relaxation time (τ), free volume and internal pressure (πi).


2021 ◽  
Vol 2 (1) ◽  
pp. 012-027
Author(s):  
M. Sathish ◽  
K. Venkataramanan ◽  
R. Padmanaban ◽  
Helan Ruth ◽  
K. Vadivel ◽  
...  

In this work, acoustic, thermal, and optical properties were tested on the different concentrations of the Disodium Tartrate solutions. First, the viscosity studies were analyzed for the Disodium tartrate in the concentration range from 2% to 20% with different temperatures 303K, 308K, 313K, and 318K. It was noted that the relative viscosity and the activation energy of the prepared compound increase with increases in concentration and decreases with temperature increases. The properties like density and ultrasonic velocity are varied when increases the concentration of the aqueous solutions of Disodium Tartrate. In this study, the values of adiabatic compressibility show an inverse behavior when compared with ultrasonic velocity due to the interaction between solute and solvent molecules. Also observed that the inter-molecular free length is maximum for a lower percentage. The free volume for the compound is maximum at 2% and a minimum of 20%, since it reduces when the internal pressure increases. It was revealed that the classical absorption coefficient and relaxation time for Disodium Tartrate is minimum for lower percentage and minimum for a higher percentage. The interactions between the solute and solvent are confirmed through the property like specific Acoustical impedance. It was noted that the increase in internal pressure increases the concentration of the compound. The ion-solvent interaction was discussed by the relative association study, thus the values of relative association increases with an increase in concentration. The Rao’s and Wada’s constant increases linearly in aqueous solutions of Disodium Tartrate for the entire system.


2010 ◽  
Vol 7 (2) ◽  
pp. 353-356 ◽  
Author(s):  
S. Mullainathan ◽  
S. Nithiyanantham

The ultrasonic velocity, density and viscosity at 303 K have been measured in the binary systems of 1,4-dioxane and acetone with water. From the experimental data, various acoustical parameters such as adiabatic compressibility (β), intermolecular free length (Lf), free volume (Vf), internal pressure (πi), Rao’s constant (R), Wada’s constant (W) and specific acoustical impedance (Z) were calculated. The results are interpreted in terms of molecular interaction between the components of the mixtures.


Sign in / Sign up

Export Citation Format

Share Document