scholarly journals Acoustic, thermal and optical properties of organic based disodium tartrate salt

2021 ◽  
Vol 2 (1) ◽  
pp. 012-027
Author(s):  
M. Sathish ◽  
K. Venkataramanan ◽  
R. Padmanaban ◽  
Helan Ruth ◽  
K. Vadivel ◽  
...  

In this work, acoustic, thermal, and optical properties were tested on the different concentrations of the Disodium Tartrate solutions. First, the viscosity studies were analyzed for the Disodium tartrate in the concentration range from 2% to 20% with different temperatures 303K, 308K, 313K, and 318K. It was noted that the relative viscosity and the activation energy of the prepared compound increase with increases in concentration and decreases with temperature increases. The properties like density and ultrasonic velocity are varied when increases the concentration of the aqueous solutions of Disodium Tartrate. In this study, the values of adiabatic compressibility show an inverse behavior when compared with ultrasonic velocity due to the interaction between solute and solvent molecules. Also observed that the inter-molecular free length is maximum for a lower percentage. The free volume for the compound is maximum at 2% and a minimum of 20%, since it reduces when the internal pressure increases. It was revealed that the classical absorption coefficient and relaxation time for Disodium Tartrate is minimum for lower percentage and minimum for a higher percentage. The interactions between the solute and solvent are confirmed through the property like specific Acoustical impedance. It was noted that the increase in internal pressure increases the concentration of the compound. The ion-solvent interaction was discussed by the relative association study, thus the values of relative association increases with an increase in concentration. The Rao’s and Wada’s constant increases linearly in aqueous solutions of Disodium Tartrate for the entire system.

Author(s):  
Baljeet Singh Patial

Ultrasonic velocities (u), densities (ρ) and viscosities (η) are measured in respect of ethylmethylketone (EMK) and N,N-dimethylformamide (DMF) over the entire composition at 298, 308and 318K. Attempt have been made to extract the information with respect to various kind of intermolecular interactions, such as H-bonding, dipole-dipole, solute –solvent, dispersion type interactions existing between these two components from the following acoustical parameter when examined as a function of solvent composition at different temperatures: adiabatic compressibility (β), specific acoustic impedance (Z), intermolecular free length (Lf), molar sound velocity (Rm), wada’s constant (W), viscous relaxation time (τ), free volume and internal pressure (πi).


2013 ◽  
Vol 33 (9) ◽  
pp. 851-856 ◽  
Author(s):  
Baljinder Kaur ◽  
Kailash C. Juglan

Abstract Density, viscosity and ultrasonic velocity of polyvinyl acetate with acetic acid have been measured at a temperature of 299K for different concentrations. Density and viscosity have been measured for a binary liquid mixture with a specific gravity bottle and a viscometer. Ultrasonic velocity has been measured using a single crystal interferometer at a frequency of 2 MHz. Ultrasonic velocities for the binary mixture at 1 MHz and 2 MHz was compared by taking some values from the literature. The sound velocity (V), density (ρ) and viscosity (η) were used to calculate the parameters such as adiabatic compressibility (β), acoustic impedance (Z), intermolecular free length (Lf), ultrasonic attenuation (α/f2) and relaxation time (τ). The variations of experimentally obtained parameters indicate the presence of molecular interaction between the molecules of the mixture. The ultrasonic velocity increased with an increase in concentration. Solute-solvent interaction is further confirmed by viscosity values, which increased with increasing concentration suggesting more association between solute and solvent molecules. The linear variations in Rao’s constant and Wada’s constant suggest the absence of complex formation.


Author(s):  
Mrunal M. Mahajan ◽  
Pravin B. Raghuwanshi

<div><p><em>The present work deals with the study of acoustic parameters like ultrasonic velocity (V), </em><em>adiabatic compressibility (β<sub>s</sub>), apparent molar volume (</em><em>f</em><em><sub>v</sub></em><em>) and intermolecular free length (L<sub>f</sub>) by ultrasonic </em><em>interferometric measurements</em><em> which reflects structural interaction of water molecules and organic solvent molecules with substituted Schiff bases. The study of N–(2-hydroxybenzylidene)-3-substituted pyridine -2- amine Schiff bases were carried in different percentage of 1,4-dioxane-water medium, at 293, 297 and 300 K. The densities and velocities thus obtained were used to evaluate acoustic parameters for all the ligands.</em></p></div>


Author(s):  
Baljeet Singh Patial

Ultrasonic velocity, viscosity and density studies on solution of tetrapentylammonium bromide (Pen4NBr) in N,N-dimethylformamide, ethylmethylketone (EMK) and DMF-EMK solvent mixtures containing 0, 20, 40, 60, 80 and 100 mol % of DMF at 298, 308 and 318K have been reported. From the velocity, viscosity and density data values, various parameters namely, the adiabatic compressibility (β), Intermolecular free length (Lf), specific acoustic impedance (Z), free volume (Vf), internal pressure (πi) and relaxation time (τ) have been calculated. All these parameters have been discussed separately to throw light on the solute-solvent and solvent-solvent interactions.


2010 ◽  
Vol 7 (2) ◽  
pp. 353-356 ◽  
Author(s):  
S. Mullainathan ◽  
S. Nithiyanantham

The ultrasonic velocity, density and viscosity at 303 K have been measured in the binary systems of 1,4-dioxane and acetone with water. From the experimental data, various acoustical parameters such as adiabatic compressibility (β), intermolecular free length (Lf), free volume (Vf), internal pressure (πi), Rao’s constant (R), Wada’s constant (W) and specific acoustical impedance (Z) were calculated. The results are interpreted in terms of molecular interaction between the components of the mixtures.


2018 ◽  
Vol 2 (3) ◽  
pp. 34 ◽  
Author(s):  
Katarzyna Szymczyk ◽  
Magdalena Szaniawska ◽  
Anna Taraba

Density, viscosity and speed of sound of aqueous solutions of nonionic surfactants such as polyoxyethylene (20) sorbitan monolaurate (Tween 20) and polyoxyethylene (20) sorbitan monostearate (Tween 60) at T = 293, 303 and 313 K are reported. From these measured values different parameters such as, for example, isentropic compressibility, molecular free length, acoustic impedance, primary hydration numbers and internal pressure have been calculated and employed to discuss molecular packing, structural alteration and molecular interactions. The variation in these parameters with temperature indicates that the mobility of surfactant molecules increases the disordered state of the liquid (surfactant + water) due to irregular packing of the molecules. Also, for Tween 20 solutions, more conversion to bulk water of the structured water molecules was observed, obtaining lower compressibilities and higher values of hydration numbers as well as internal pressure for a given T.


2020 ◽  
Vol 10 (2) ◽  
pp. 5259-5265

The densities (ρ), and ultrasonic velocities (u) of 1-Butyl-2, 3-dimethylimmidazolium chloride,[bdmim]Cl in aqueous solutions of Tetra-n-butyl ammonium bromide over the complete range of concentrations has been calculated at different temperatures T= (298.15 to 313)K. Experimentally obtained values of ρ and u were used to calculate the parameters like acoustic impedance (Z), isentropic compressibility (βS), molar sound velocity (Rao’s constant) (R), molar compressibility (Wada’s constant)(W), intermolecular free length (Lf), co-efficient of thermal expansion (α), heat capacity ratio (γ), isothermal compressibility (βT) and nonlinearity parameters (B/A). The final results obtained were analyzed to understand the ion-solvent and ion-ion interaction so taking place in the solutions. Further, the effect of temperature on the ion solvent interactions was discussed. Ion-solvent interactions are affected by the thermo acoustical properties and by nonlinear parameters.


Author(s):  
A.B. Naik

Density, ultrasonic velocity of pure solvent, dimethylformamide (DMF) and ligand solutions of substituted thiazoles in DMF-water mixture were measured at different temperatures (303.15, 308.15, 313.15 and 318.15) K. Acoustical parameters such as adiabatic compressibility, intermolecular free length, acoustical impedance and relative association were determined from experimental data of density and ultrasonic velocity. The effect of temperature variations on the strength of molecular interaction has also been studied. An excellent correlation represents in terms of solute-solvent and solvent-solvent interaction at all temperatures.


2015 ◽  
Vol 1086 ◽  
pp. 111-119
Author(s):  
Selvi C. Senthamil ◽  
S. Ravichandran ◽  
C.P. Malliga ◽  
C. Thenmozhi ◽  
V. Kannappan

Ultrasonic velocity and density of salicilaldehyde with iodine in hexane has been measured at 293.15K, 298.15K, 303.15K and 308.15K in different concentration. Ultrasonic velocity has been measured using single frequency interferometer at 2MHz (Model F-81). By using the Ultrasonic velocity (u), density (ρ) and coefficient of viscosity (η) and the other acoustical parameters adiabatic compressibility (κ), free length (Lf), interaction parameter (α), Free volume (Vf) were calculated. The addition of hexane with a mixture leads to a compact structure due to presence of dipolar type interaction. This contributes to the decrease in free volume values and the internal pressure shows an increasing trend. The results have been discussed in terms of solute-solute and solute-solvent interactions between the component and the compatibility of these methods in predicting the interactions in these mixtures has also been discussed.Key Words salicilaldehyde, iodine, hexane, Ultrasonic velocity, molecular interactions.


Author(s):  
G. Pavan Kumar ◽  
Ch. Praveen Babu ◽  
K. Samatha ◽  
A.N. Jyosthna ◽  
K. Showrilu

Ultrasonic velocities (U), densities (ρ), and coefficient of viscosities (η) are measured for binary mixtures containing (i) p-chlorotoluene and (ii) benzene at 303.15 K, 308.15 K, 313.15 K and 318.15 K to understand the molecular interaction. Various acoustical parameters such as adiabatic compressibility (βad), free length (Lf), acoustic impedance (Z), free volume (Vf), molar volume (Vm), Rao’s constant (R), Wada’s constant (W) and internal pressure (πi), are calculated from the measured values of U, ρ, and η. The trend in acoustical parameters also substantiates to asses strong molecular interactions.


Sign in / Sign up

Export Citation Format

Share Document