Streamflow estimation at ungauged site using wavelet group method of data handling in peninsular Malaysia

2014 ◽  
Vol 8 ◽  
pp. 513-524
Author(s):  
Basri Badyalina ◽  
Ani Shabri ◽  
Ruhaidah Samsudin
2015 ◽  
Vol 76 (1) ◽  
Author(s):  
Basri Badyalina ◽  
Ani Shabri

Group Method of Data Handling (GMDH) have been successful in many fields such as economy, ecology, medical diagnostics, signal processing, and control systems but given a little attention in hydrology field especially for flood estimation at ungauged sites.  Ungauged site basically mean the site of interest is no flood peak data available. This paper presented application of GMDH model at ungauged site to predict flood quantile for T=10 year and T=100 year. There five catchment characteristics implement in this study that are catchment area, elevation, longest drainage path, slope of the catchment and mean maximum annual rainfall. The total number of catchment used for this study is 70 catchments in Peninsular Malaysia. Four quantitative standard statistical indices such as mean absolute error (MAE), root mean square error (RMSE) and Nash-Sutcliffe coefficient of efficiency (CE) are employed. Based on these results, it was found that the GMDH model outperforms the prediction ability of the traditional LR model.


2021 ◽  
Vol 50 (9) ◽  
pp. 2765-2779
Author(s):  
Basri Badyalina ◽  
Ani Shabri ◽  
Muhammad Fadhil Marsani

Among the foremost frequent and vital tasks for hydrologist is to deliver a high accuracy estimation on the hydrological variable, which is reliable. It is essential for flood risk evaluation project, hydropower development and for developing efficient water resource management. Presently, the approach of the Group Method of Data Handling (GMDH) has been widely applied in the hydrological modelling sector. Yet, comparatively, the same tool is not vastly used for the hydrological estimation at ungauged basins. In this study, a modified GMDH (MGMDH) model was developed to ameliorate the GMDH model performance on estimating hydrological variable at ungauged sites. The MGMDH model consists of four transfer functions that include polynomial, hyperbolic tangent, sigmoid and radial basis for hydrological estimation at ungauged basins; as well as; it incorporates the Principal Component Analysis (PCA) in the GMDH model. The purpose of PCA is to lessen the complexity of the GMDH model; meanwhile, the implementation of four transfer functions is to enhance the estimation performance of the GMDH model. In evaluating the effectiveness of the proposed model, 70 selected basins were adopted from the locations throughout Peninsular Malaysia. A comparative study on the performance was done between the MGMDH and GMDH model as well as with other extensively used models in the area of flood quantile estimation at ungauged basins known as Linear Regression (LR), Nonlinear Regression (NLR) and Artificial Neural Network (ANN). The results acquired demonstrated that the MGMDH model possessed the best estimation with the highest accuracy comparatively among all models tested. Thus, it can be deduced that MGMDH model is a robust and efficient instrument for flood quantiles estimation at ungauged basins.


Author(s):  
Keishiro CHIYONOBU ◽  
Sooyoul KIM ◽  
Masahide TAKEDA ◽  
Chisato HARA ◽  
Hajime MASE ◽  
...  

2020 ◽  
Vol 24 (7) ◽  
pp. 1996-2008
Author(s):  
Masoud Nouri Mehrabani ◽  
Emadaldin Mohammadi Golafshani ◽  
Mehdi Ravanshadnia

2021 ◽  
Vol 316 ◽  
pp. 661-666
Author(s):  
Nataliya V. Mokrova

Current cobalt processing practices are described. This article discusses the advantages of the group argument accounting method for mathematical modeling of the leaching process of cobalt solutions. Identification of the mathematical model of the cascade of reactors of cobalt-producing is presented. Group method of data handling is allowing: to eliminate the need to calculate quantities of chemical kinetics; to get the opportunity to take into account the results of mixed experiments; to exclude the influence of random interference on the simulation results. The proposed model confirms the capabilities of the group method of data handling for describing multistage processes.


Sign in / Sign up

Export Citation Format

Share Document