A numerical method for improving the reliability of knee translation measurement in skin marker-based motion analysis

2014 ◽  
Vol 1 (4) ◽  
pp. 269-277
Author(s):  
Hongsheng Wang ◽  
Nigel Zheng
2019 ◽  
Vol 186 (2) ◽  
pp. 66-66 ◽  
Author(s):  
Ming Lu ◽  
Cheng-Chung Lin ◽  
Tung-Wu Lu ◽  
Shi-Nuan Wang ◽  
Ching-Ho Wu

Skin marker-based motion analysis has been widely used to evaluate the functional performance of canine gait and posture. However, the interference of soft tissues between markers and the underlying bones (soft tissue artefacts, STAs) may lead to errors in kinematics measurements. Currently, no optimal marker attachment sites and cluster compositions are recommended for canine gait analysis. The current study aims to evaluate cluster-level STAs and the effects of cluster compositions on the computed stifle kinematics. Ten mixed-breed healthy dogs affixed with 19 retroreflective markers on the thigh and shank were enrolled. During isolated stifle passive extension, the marker trajectories were acquired with a motion capture system, and the skeletal poses were determined by integrating fluoroscopic and CT images of the bones. The cluster-level STAs were assessed, and clusters were paired to calculate the stifle kinematics. A selection of cluster compositions was useful for deriving accurate sagittal and frontal plane stifle kinematics with flexion angles below 50 per cent of the range of motion. The findings contribute to improved knowledge of canine STAs and their influence on motion measurements. The marker composition with the smallest error in describing joint kinematics is recommended for future applications and study in dogs during dynamic gait assessment.


2009 ◽  
Vol 21 (03) ◽  
pp. 223-232 ◽  
Author(s):  
Tsung-Yuan Tsai ◽  
Tung-Wu Lu ◽  
Mei-Ying Kuo ◽  
Horng-Chaung Hsu

Skin marker-based stereophotogrammetry has been widely used in the in vivo, noninvasive measurement of three-dimensional (3D) joint kinematics in many clinical applications. However, the measured poses of body segments are subject to errors called soft tissue artifacts (STA). No study has reported the unrestricted STA of markers on the thigh and shank in normal subjects during functional activities. The purpose of this study was to assess the 3D movement of skin markers relative to the underlying bones in normal subjects during functional activities using a noninvasive method based on the integration of 3D fluoroscopy and stereophotogrammetry. Generally, thigh markers had greater STA than shank ones and the STA of the markers were in nonlinear relationships with knee flexion angles. The STA of a marker also appeared to vary among subjects and were affected by activities. This suggests that correction of STA in human motion analysis may have to consider the multijoint nature of functional activities such as using a global compensation approach with individual anthropometric data. The results of the current study may be helpful for establishing guidelines of marker location selection and for developing STA compensation methods in human motion analysis.


Author(s):  
Bo Gao ◽  
Scott Banks ◽  
Nigel Zheng

Skin marker-based stereophotogrammetry provides a non-invasive and radiation-free approach in human motion analysis. It has been widely used to study the normal function and pathological conditions of human musculoskeletal system. One major limitation of this technique is usually referred to as soft tissue artifact (STA), which is defined as the relative movement between skin markers and the underlying bone. Much effort has been devoted to developing techniques for STA compensation and better motion analysis accuracy. However, the problem has not yet been solved satisfactorily.


2021 ◽  
Author(s):  
Bhrigu K. Lahkar ◽  
Pierre-Yves Rohan ◽  
Jean-Jacques Yaacoub ◽  
Helene Pillet ◽  
Xavier Bonnet ◽  
...  

AbstractSoft tissue deformation(STD) causes the most prominent source of error in skin marker (SM) based motion analysis, commonly referred to as Soft Tissue Artifact (STA). To compensate for its effect and to accurately assess in vivo joint kinematics, quantification of STD in three-dimension (3D) is essential. In the literature, different invasive and radiological approaches have been employed to study how STA propagates in joint kinematics. However, there is limited reference data extensively reporting distribution of the artifact itself in 3D.The current study was thus aimed at quantifying STD in 10 subjects along three anatomical directions. Biplanar X-ray system was used to determine true bone and SM positions while the subjects underwent quasi-static single leg flexion.STD exhibited inter-subject similarity. A non-uniform distribution was observed at the pelvis, thigh and shank displaying maximum at the thigh (up to 18.5 mm) and minimum at the shank (up to 8 mm). STD at the pelvis and thigh displayed inter-marker similarity. STD at the pelvis was found direction independent, showing similar distribution in all the 3 directions. However, the thigh and shank exhibited higher STD in the proximal-distal direction of the bone embedded anatomical reference frame. These findings may provide more insights while interpreting motion analysis data as well to effectively strategize STA compensation methods.


2010 ◽  
Vol 43 (2) ◽  
pp. 268-273 ◽  
Author(s):  
Michael S. Andersen ◽  
Daniel L. Benoit ◽  
Michael Damsgaard ◽  
Dan K. Ramsey ◽  
John Rasmussen

Sign in / Sign up

Export Citation Format

Share Document