soft tissue artifact
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 10)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
pp. 110464
Author(s):  
Bhrigu K. Lahkar ◽  
Pierre-Yves Rohan ◽  
Ayman Assi ◽  
Helene Pillet ◽  
Xavier Bonnet ◽  
...  

2021 ◽  
Author(s):  
Bhrigu K. Lahkar ◽  
Pierre-Yves Rohan ◽  
Ayman Assi ◽  
Helene Pillet ◽  
Xavier Bonnet ◽  
...  

AbstractSkin Marker (SM) based motion capture is the most widespread technique used for motion analysis. Yet, the accuracy is often hindered by Soft Tissue Artifact (STA). This is a major issue in clinical gait analysis where kinematic results are used for decision-making. It also has a considerable influence on the results of rigid body and Finite Element (FE) musculoskeletal models that rely on SM-based kinematics to estimate muscle, contact and ligament forces. Current techniques designed to compensate for STA, in particular multi-body optimization methods, assume anatomical simplifications to define joint constraints. These methods, however, cannot adapt to subjects’ bone morphology, particularly for patients with joint lesions, nor easily can account for subject- and location-dependent STA. In this perspective, we propose to develop a conceptual FE based model of the lower limb for STA compensation and evaluate it for 66 healthy subjects under level walking motor task.Both hip and knee joint kinematics were analyzed, considering both rotational and translational joint motion. Results showed that STA caused underestimation of the hip joint kinematics (up to 2.2°) for all rotational DoF, and overestimation of knee joint kinematics (up to 12°) except in flexion/extension. Joint kinematics, in particular the knee joint, appeared to be sensitive to soft tissue stiffness parameters (rotational and translational mean difference up to 1.5° and 3.4 mm). Analysis of the results using alternative joint representations highlighted the versatility of the proposed modeling approach. This work paves the way for using personalized models to compensate for STA in healthy subjects and different activities.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Katharina Schmidt ◽  
David Hochmann

AbstractSmall sensor devices like inertial measurement units enable mobile movement and gait analysis, whereby existing systems differ in data acquisition, data processing, and gait parameter calculation. Concerning the validation, recent studies focus on the captured motion and the influence of sensor positioning with respect to the accuracy of the computed biomechanical parameters in comparison to a reference system. Although soft tissue artifact is a major source of error for skin-mounted sensors, there are no investigations regarding the relative movement between the body segment and sensor attachment itself. The aim of this study is to find an evaluation method and to determine parameters that allow the validation of various sensor attachment types and different sensor positionings. The analysis includes the comparison between an adhesive and strap attachment variant as well as the frontal and lateral sensor placement. To validate different attachments, an optical marker-based tracking system was used to measure the body segment and sensor position during movement. The distance between these two positions was calculated and analyzed to determine suitable validation parameters. Despite the exploratory research, the results suggest a feasible validation method to detect differences between the attachments, independent of the sensor type. To have representative and statistically validated results, further studies that involve more participants are necessary.


2020 ◽  
Vol 108 ◽  
pp. 109890
Author(s):  
Niccolo M. Fiorentino ◽  
Penny R. Atkins ◽  
Michael J. Kutschke ◽  
K. Bo Foreman ◽  
Andrew E. Anderson

2020 ◽  
Vol 14 (4) ◽  
pp. 230
Author(s):  
Federica Ragni ◽  
Cinzia Amici ◽  
Alberto Borboni ◽  
Rodolfo Faglia ◽  
Valter Cappellini ◽  
...  

2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Ziyun Ding ◽  
Manuela Güdel ◽  
Samuel H. L. Smith ◽  
Richard A. Ademefun ◽  
Anthony M. J. Bull

Abstract The accurate measurement of full six degrees-of-freedom (6DOFs) knee joint kinematics is prohibited by soft tissue artifact (STA), which remains the greatest source of error. The purpose of this study was to present and assess a new femoral clamp to reduce STA at the thigh. It was hypothesized that the device can preserve the natural knee joint kinematics pattern and outperform a conventional marker mounted rigid cluster during gait. Six healthy subjects were asked to walk barefoot on level ground with a cluster marker set (cluster gait) followed by a cluster-clamp-merged marker set (clamp gait) and their kinematics was measured using the cluster method in cluster gait and the cluster and clamp methods simultaneously in clamp gait. Two operators performed the gait measurement. A 6DOFs knee joint model was developed to enable comparison with the gold standard knee joint kinematics measured using a dual fluoroscopic imaging technique. One-dimensional (1D) paired t-tests were used to compare the knee joint kinematics waveforms between cluster gait and clamp gait. The accuracy was assessed in terms of the root-mean-square error (RMSE), coefficient of determination, and Bland–Altman plots. Interoperator reliability was assessed using the intraclass correlation coefficient (ICC). The result showed that the femoral clamp did not change the walking speed and knee joint kinematics waveforms. Additionally, clamp gait reduced the rotation and translation errors in the transverse plane and improved the interoperator reliability when compared to the rigid cluster method, suggesting a more accurate and reliable measurement of knee joint kinematics.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4221 ◽  
Author(s):  
Valeria Rosso ◽  
Valentina Agostini ◽  
Ryo Takeda ◽  
Shigeru Tadano ◽  
Laura Gastaldi

Overweight/obesity is a physical condition that affects daily activities, including walking. The main purpose of this study was to identify if there is a relationship between body mass index (BMI) and gait characteristics in young adults. 12 normal weight (NW) and 10 overweight/obese (OW) individuals walked at a self-selected speed along a 14 m indoor path. H-Gait system, combining seven inertial sensors (fixed on pelvis and lower limbs), was used to record gait data. Walking speed, spatio-temporal parameters and joint kinematics in 3D were analyzed. Differences between NW and OW and correlations between BMI and gait parameters were evaluated. Conventional spatio-temporal parameters did not show statistical differences between the two groups or correlations with the BMI. However, significant results were pointed out for the joint kinematics. OW showed greater hip joint angles in frontal and transverse planes, with respect to NW. In the transverse plane, OW showed a greater knee opening angle and a shorter length of knee and ankle trajectories. Correlations were found between BMI and kinematic parameters in the frontal and transverse planes. Despite some phenomena such as soft tissue artifact and kinematics cross-talk, which have to be more deeply assessed, current results show a relationship between BMI and gait characteristics in young adults that should be looked at in osteoarthritis prevention.


Sign in / Sign up

Export Citation Format

Share Document