Scenario-based seismic performance assessment of regular and irregular highway bridges under near-fault ground motions

2015 ◽  
Vol 8 (3) ◽  
pp. 573-589 ◽  
Author(s):  
Abouzar Dolati ◽  
Touraj Taghikhany ◽  
Mohammad Khanmohammadi ◽  
Alireza Rahai
2012 ◽  
Vol 06 (02) ◽  
pp. 1250012 ◽  
Author(s):  
A. YAHYAABADI ◽  
M. TEHRANIZADEH

Intensity measure (IM) which describes the strength of an earthquake record plays an important role in the seismic performance assessment of structures. An improved IM that can reduce the variability in seismic demands helps reducing the number of records necessary to predict the seismic performance with sufficient accuracy. In this study, an improved RMS-based IM is developed based on the results obtained from incremental dynamic analyses of short-to relatively long-period frames under an ensemble of near-fault pulse-like earthquake records. It is observed that the root-mean-square value of pseudo spectral accelerations, (Sa) rms , is generally superior to that of spectral velocities, (Sv) rms , in seismic demand prediction under near-fault records. To compute (Sa) rms as IM, two appropriate period ranges are suggested for short- and moderated-to relatively long-period frames, respectively. Comparing the efficiency of (Sa) rms with several advanced IMs shows that (Sa) rms is more efficient in predicting the inelastic response and collapse capacity of short-period frames. It is also found that intensity measure (Sa) rms is sufficient with respect to the magnitude and source-to-site distance for all frames of various heights under near-fault ground motions.


Sign in / Sign up

Export Citation Format

Share Document