Rayleigh wave in an anisotropic heterogeneous crustal layer lying over a gravitational sandy substratum

2016 ◽  
Vol 10 (2) ◽  
pp. 137-154 ◽  
Author(s):  
Rajneesh Kakar ◽  
Shikha Kakar
2017 ◽  
Vol 54 (2) ◽  
pp. 163-172 ◽  
Author(s):  
Shutian Ma ◽  
Pascal Audet

Models of the seismic velocity structure of the crust in the seismically active northern Canadian Cordillera remain poorly constrained, despite their importance in the accurate location and characterization of regional earthquakes. On 29 August 2014, a moderate earthquake with magnitude 5.0, which generated high-quality Rayleigh wave data, occurred in the Northwest Territories, Canada, ∼100 km to the east of the Cordilleran Deformation Front. We carefully selected 23 seismic stations that recorded the Rayleigh waves and divided them into 13 groups according to the azimuth angle between the earthquake and the stations; these groups mostly sample the Cordillera. In each group, we measured Rayleigh wave group velocity dispersion, which we inverted for one-dimensional shear-wave velocity models of the crust. We thus obtained 13 models that consistently show low seismic velocities with respect to reference models, with a slow upper and lower crust surrounding a relatively fast mid crustal layer. The average of the 13 models is consistent with receiver function data in the central portion of the Cordillera. Finally, we compared earthquake locations determined by the Geological Survey of Canada using a simple homogenous crust over a mantle half space with those estimated using the new crustal velocity model, and show that estimates can differ by as much as 10 km.


2012 ◽  
Vol 42 (4) ◽  
Author(s):  
Baljeet Singh ◽  
Sangeeta Kumari ◽  
Jagdish Singh
Keyword(s):  

2015 ◽  
Vol 2 (3) ◽  
Author(s):  
Tatsuo Ohmachi ◽  
Shusaku Inoue ◽  
Tetsuji Imai

The 2003 Tokachi-oki earthquake (MJ 8.0) occurred off the southeastern coast of Tokachi, Japan, and generated a large tsunami which arrived at Tokachi Harbor at 04:56 with a wave height of 4.3 m. Japan Marine Science and Technology Center (JAMSTEC) recovered records of water pressure and sea-bed acceleration at the bottom of the tsunami source region. These records are first introduced with some findings from Fourier analysis and band-pass filter analysis. Water pressure disturbance lasted for over 30 minutes and the duration was longer than those of accelerations. Predominant periods of the pressure looked like those excited by Rayleigh waves. Next, numerical simulation was conducted using the dynamic tsunami simulation technique able to represent generation and propagation of Rayleigh wave and tsunami, with a satisfactory result showing validity and usefulness of this technique. Keywords: Earthquake, Rayleigh wave, tsunami, near-field


2019 ◽  
Vol 218 (1) ◽  
pp. 547-559 ◽  
Author(s):  
Yuhang Lei ◽  
Hongyan Shen ◽  
Xinxin Li ◽  
Xin Wang ◽  
Qingchun Li

Author(s):  
Xinyue Wu ◽  
Zhihui Wen ◽  
Yabin Jin ◽  
Timon Rabczuk ◽  
Xiaoying Zhuang ◽  
...  

1969 ◽  
Vol 187 (3) ◽  
pp. 804-808 ◽  
Author(s):  
Richard E. Prange

Sign in / Sign up

Export Citation Format

Share Document