scholarly journals Seismic velocity model of the crust in the northern Canadian Cordillera from Rayleigh wave dispersion data

2017 ◽  
Vol 54 (2) ◽  
pp. 163-172 ◽  
Author(s):  
Shutian Ma ◽  
Pascal Audet

Models of the seismic velocity structure of the crust in the seismically active northern Canadian Cordillera remain poorly constrained, despite their importance in the accurate location and characterization of regional earthquakes. On 29 August 2014, a moderate earthquake with magnitude 5.0, which generated high-quality Rayleigh wave data, occurred in the Northwest Territories, Canada, ∼100 km to the east of the Cordilleran Deformation Front. We carefully selected 23 seismic stations that recorded the Rayleigh waves and divided them into 13 groups according to the azimuth angle between the earthquake and the stations; these groups mostly sample the Cordillera. In each group, we measured Rayleigh wave group velocity dispersion, which we inverted for one-dimensional shear-wave velocity models of the crust. We thus obtained 13 models that consistently show low seismic velocities with respect to reference models, with a slow upper and lower crust surrounding a relatively fast mid crustal layer. The average of the 13 models is consistent with receiver function data in the central portion of the Cordillera. Finally, we compared earthquake locations determined by the Geological Survey of Canada using a simple homogenous crust over a mantle half space with those estimated using the new crustal velocity model, and show that estimates can differ by as much as 10 km.

2021 ◽  
Vol 9 ◽  
Author(s):  
Hidayat Hidayat ◽  
Andri Dian Nugraha ◽  
Awali Priyono ◽  
Marjiyono Marjiyono ◽  
Januar H. Setiawan ◽  
...  

The Banyumas Basin is a tertiary sedimentary basin located in southern Central Java, Indonesia. Due to the presence of volcanic deposits, 2-D seismic reflection methods cannot provide a good estimation of the sediment thickness and the subsurface geology structure in this area. In this study, the passive seismic tomography (PST) method was applied to image the 3-D subsurface Vp, Vs, and Vp/Vs ratio. We used 70 seismograph borehole stations with a recording duration of 177 days. A total of 354 events with 9, 370 P and 9, 368 S phases were used as input for tomographic inversion. The checkshot data of a 4, 400-meter deep exploration well (Jati-1) located within the seismic network were used to constrain the shallow crustal layer of the initial 1-D velocity model. The model resolution of the tomographic inversions was assessed using the checkerboard resolution test (CRT), the diagonal resolution element (DRE), and the derivative weight sum (DWS). Using the obtained Vp, Vs, and Vp/Vs ratio, we were able to sharpen details of the geological structures within the basin from previous geological studies, and a fault could be well-imaged at a depth of 4 km. We interpreted this as the main dextral strike-slip fault that controls the pull apart process of the Banyumas Basin. The thickness of the sediment layers, as well as its layering, were also could be well determined. We found prominent features of the velocity contrast that aligned very well with the boundary between the Halang and Rambatan formations as observed in the Jati-1 well data. Furthermore, an anticline structure, which is a potential structural trap for the petroleum system in the Banyumas Basin, was also well imaged. This was made possible due to the dense borehole seismographic stations which were deployed in the study area.


2020 ◽  
Vol 8 (3) ◽  
pp. T487-T499
Author(s):  
Yunqiang Sun ◽  
Gang Luo ◽  
Yaxing Li ◽  
Mingwen Wang ◽  
Xiaofeng Jia ◽  
...  

It has been recognized that stress perturbations in sediments induced by salt bodies can cause elastic-wave velocity (seismic velocity) changes and seismic anisotropy through changing their elastic parameters, thus leading to difficulties in salt imaging. To investigate seismic velocity changes and seismic anisotropy by near-salt stress perturbations and their impacts on salt imaging, taking the Kuqa depression as an example, we have applied a 2D plane-strain static geomechanical finite-element model to simulate stress perturbations and calculate the associated seismic velocity changes and seismic anisotropy; then we used the reverse time migration and imaging method to image the salt structure by excluding and including the stress-induced seismic velocity changes. Our model results indicate that near-salt stresses are largely perturbed due to salt stress relaxation, and the stress perturbations lead to significant changes of the seismic velocities and seismic anisotropy near the salt structure: The maximum seismic velocity changes can reach approximately 20% and the maximum seismic anisotropy can reach approximately 10%. The significant changes of seismic velocities due to stress perturbations largely impact salt imaging: The salt imaging is unclear, distorted, or even failed if we exclude near-salt seismic velocity changes from the preliminary velocity structure, but the salt can be better imaged if the preliminary velocity structure is modified by near-salt seismic velocity changes. We find that the locations where salt imaging tends to fail usually occur where large seismic velocity changes happen, and these locations are clearly related to the geometric characteristics of salt bodies. To accurately image the salt, people need to integrate results of geomechanical models and stress-induced seismic velocity changes into the imaging approach. The results provide petroleum geologists with scientific insights into the link between near-salt stress perturbations and their induced seismic velocity changes and help exploration geophysicists build better seismic velocity models in salt basins and image salt accurately.


Geology ◽  
2021 ◽  
Author(s):  
Xingli Fan ◽  
Qi-Fu Chen ◽  
Yinshuang Ai ◽  
Ling Chen ◽  
Mingming Jiang ◽  
...  

The origin and mantle dynamics of the Quaternary intraplate sodic and potassic volcanism in northeast China have long been intensely debated. We present a high-resolution, three-dimensional (3-D) crust and upper-mantle S-wave velocity (Vs) model of northeast China by combining ambient noise and earthquake two-plane wave tomography based on unprecedented regional dense seismic arrays. Our seismic images highlight a strong correlation between the basalt geochemistry and upper-mantle seismic velocity structure: Sodic volcanoes are all characterized by prominent low seismic velocities in the uppermost mantle, while potassic volcanoes still possess a normal but thin upper-mantle “lid” depicted by high seismic velocities. Combined with previous petrological and geochemical research findings, we propose that the rarely erupted Quaternary potassic volcanism in northeast China results from the interaction between asthenospheric low-degree melts and the overlying subcontinental lithospheric mantle. In contrast, the more widespread Quaternary sodic volcanism in this region is predominantly sourced from the upwelling asthenosphere without significant overprinting from the subcontinental lithospheric mantle.


Geophysics ◽  
2021 ◽  
pp. 1-35
Author(s):  
M. Javad Khoshnavaz

Building an accurate velocity model plays a vital role in routine seismic imaging workflows. Normal-moveout-based seismic velocity analysis is a popular method to make the velocity models. However, traditional velocity analysis methodologies are not generally capable of handling amplitude variations across moveout curves, specifically polarity reversals caused by amplitude-versus-offset anomalies. I present a normal-moveout-based velocity analysis approach that circumvents this shortcoming by modifying the conventional semblance function to include polarity and amplitude correction terms computed using correlation coefficients of seismic traces in the velocity analysis scanning window with a reference trace. Thus, the proposed workflow is suitable for any class of amplitude-versus-offset effects. The approach is demonstrated to four synthetic data examples of different conditions and a field data consisting a common-midpoint gather. Lateral resolution enhancement using the proposed workflow is evaluated by comparison between the results from the workflow and the results obtained by the application of conventional semblance and three semblance-based velocity analysis algorithms developed to circumvent the challenges associated with amplitude variations across moveout curves, caused by seismic attenuation and class II amplitude-versus-offset anomalies. According to the obtained results, the proposed workflow is superior to all the presented workflows in handling such anomalies.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
I. Bernal ◽  
H. Tavera

In this study, we present a velocity model for the area of the 2007 Pisco-Peru earthquake ( Mw = 8.0 ) obtained using a double-difference tomography algorithm that considers aftershocks acquired for 6 months. The studied area is particularly interesting because it lies on the northern edge of the Nazca Ridge, in which the subduction of a large bathymetric structure is the origin of geomorphological features of the central coast of Peru. Relocated seismicity is used to infer the geometry of the subduction slab on the northern flank of the Nazca Ridge. The results prove that the geometry is continuous but convex because of the subduction of the ridge, thereby explaining the high uplift rates observed in this area. Our inferred distribution of seismicity agrees with both the coseismic and postseismic slip distributions.


2011 ◽  
Vol 48 (6) ◽  
pp. 1050-1063 ◽  
Author(s):  
A.L. Stephenson ◽  
G.D. Spence ◽  
K. Wang ◽  
J.A. Hole ◽  
K.C. Miller ◽  
...  

In the BATHOLITHSonland seismic project, a refraction – wide-angle reflection survey was shot in 2009 across the Coast Mountains and Interior Plateau of central British Columbia. Part of the seismic profile crossed the Nechako Basin, a Jurassic–Cretaceous basin with potential for hydrocarbons within sedimentary strata that underlies widespread volcanic rocks. Along this 205 km-long line segment, eight large explosive shots were fired into 980 seismometers. Forward and inverse modelling of the traveltime data were conducted with two independent methods: ray-tracing based modelling of first and secondary arrivals, and a higher resolution wavefront-based first-arrival seismic tomography. Material with velocities less than 5.0 km/s is interpreted as sedimentary rocks of the Nechako Basin, while velocities from 5.0–6.0 km/s may correspond to interlayered sedimentary and volcanic rocks. The greatest thickness of sedimentary rocks in the basin is found in the central 110 km of the profile. Two sub-basins were identified in this region, with widths of 20–50 km and maximum sedimentary depths of 2.5 and 3.3 km. Such features are well-defined in the velocity model, since resolution tests indicate that features with widths greater than ∼13 km are reliable. Beneath the sedimentary rocks, seismic velocities increase more slowly with depth — from 6.0 km/s just below the basin to 6.3 km/s at ∼17 km in depth, and then to 6.8–7.0 km/s at the base of the crust. The Moho is found at a depth of 33.5–35 km beneath the profile, and mantle velocities are high at 8.05–8.10 km/s.


Geophysics ◽  
2001 ◽  
Vol 66 (6) ◽  
pp. 1925-1936 ◽  
Author(s):  
Moritz M. Fliedner ◽  
Robert S. White

We use the wide‐angle wavefield to constrain estimates of the seismic velocity and thickness of basalt flows overlying sediments. Wide angle means the seismic wavefield recorded at offsets beyond the emergence of the direct wave. This wide‐angle wavefield contains arrivals that are returned from within and below the basalt flows, including the diving wave through the basalts as the first arrival and P‐wave reflections from the base of the basalts and from subbasalt structures. The velocity structure of basalt flows can be determined to first order from traveltime information by ray tracing the basalt turning rays and the wide‐angle base‐basalt reflection. This can be refined by using the amplitude variation with offset (AVO) of the basalt diving wave. Synthetic seismogram models with varying flow thicknesses and velocity gradients demonstrate the sensitivity to the velocity structure of the basalt diving wave and of reflections from the base of the basalt layer and below. The diving‐wave amplitudes of the models containing velocity gradients show a local amplitude minimum followed by a maximum at a greater range if the basalt thickness exceeds one wavelength and beyond that an exponential amplitude decay. The offset at which the maximum occurs can be used to determine the basalt thickness. The velocity gradient within the basalt can be determined from the slope of the exponential amplitude decay. The amplitudes of subbasalt reflections can be used to determine seismic velocities of the overburden and the impedance contrast at the reflector. Combining wide‐angle traveltimes and amplitudes of the basalt diving wave and subbasalt reflections enables us to obtain a more detailed velocity profile than is possible with the NMO velocities of small‐offset reflections. This paper concentrates on the subbasalt problem, but the results are more generally applicable to situations where high‐velocity bodies overlie a low‐velocity target, such as subsalt structures.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE35-VE38 ◽  
Author(s):  
Jonathan Liu ◽  
Lorie Bear ◽  
Jerry Krebs ◽  
Raffaella Montelli ◽  
Gopal Palacharla

We have developed a new method to build seismic velocity models for complex structures. In our approach, we use a spatially nonuniform parameterization of the velocity model in tomography and a uniform grid representation of the same velocity model in ray tracing to generate the linear system of tomographic equations. Subsequently, a matrix transformation is applied to the system of equations to produce a new linear system of tomographic equations using nonuniform parameterization. In this way, we improved the stability of tomographic inversion without adding computing costs. We tested the effectiveness of our process on a 3D synthetic data example.


2021 ◽  
Author(s):  
Bryant Chow

<p><b>Seismic tomography is a powerful tool for understanding Earth structure. In New Zealand, velocity models derived using ray-based tomography have been used extensively to characterize the complex plate boundary between the Australian and Pacific plates. Advances in computational capabilities now allow us to improve these velocity models using adjoint tomography, an imaging method which minimizes differences between observed and simulated seismic waveforms. We undertake the first application of adjoint tomography in New Zealand to improve a ray-based New Zealand velocity model containing the Hikurangi subduction zone and the North Island of New Zealand.</b></p> <p>In support of this work we deployed the Broadband East Coast Network (BEACON), a temporary seismic network aimed at improving coverage of the New Zealand permanent network, along the east coast of the North Island. We concurrently develop an automated, open-source workflow for full-waveform inversion using spectral element and adjoint methods. We employ this tool to assess a candidate velocity model’s suitability for adjoint tomography. Using a 3D ray-based traveltime tomography model of New Zealand, we generate synthetic seismic waveforms for more than 10 000 source–receiver pairs and evaluate waveform misfits. We subsequently perform synthetic checkerboard inversions with a realistic New Zealand source–receiver distribution. Reasonable systematic time shifts and satisfactory checkerboard resolution in synthetic inversions indicate that the candidate model is appropriate as an initial model for adjoint tomography. This assessment also demonstrates the relative ease of use and reliability of the automated tools.</p> <p>We then undertake a large-scale adjoint tomography inversion for the North Island of New Zealand using up to 1 800 unique source–receiver pairs to fit waveforms with periods 4–30 s, relating to minimum waveform sensitivities on the order of 5 km. Overall, 60 geographically well-distributed earthquakes and as many as 88 broadband station locations are included. Using a nonlinear optimization algorithm, we undertake 28 model updates of Vp and Vs over six distinct inversion legs which progressively increase resolution. The total inversion incurred a computational cost of approximately 500 000 CPU-hours. The overall time shift between observed and synthetic seismograms is reduced, and updated velocities show as much as ±30% change with respect to initial values. A formal resolution analysis using point spread tests highlights that velocity changes are strongly resolved onland and directly offshore, at depths above 30 km, with low-amplitude changes (> 1%) observed down to 100 km depth. The most striking velocity changes coincide with areas related to the active Hikurangi subduction zone.</p> <p>We interpret the updated velocity model in terms of New Zealand tectonics and geology, and observe good agreement with known basement terranes, and major structural elements such as faults, sedimentary basins, broad-scale subduction related features. We recover increased spatial heterogeneity in seismic velocities along the strike of the Hikurangi subduction zone with respect to the initial model. Below the East Coast, we interpret two localized high-velocity anomalies as previously unidentified subducted seamounts. We corroborate this interpretation with other work, and discuss the implications of deeply subducted seamounts on slip behavior along the Hikurangi margin. In the Cook Strait we observe a low-velocity zone that we interpret as a deep sedimentary basin. Strong velocity gradients bounding this low-velocity zone support hypotheses of a structural boundary here separating the North and South Islands of New Zealand. In the central North Island, low-velocity anomalies are linked to surface geology, and we relate seismic velocities at depth to crustal magmatic activity below the Taupo Volcanic Zone.</p> <p>This new velocity model provides more accurate synthetic seismograms and additional constraints on enigmatic tectonic processes related to the North Island of New Zealand. Both the velocity model itself, and the underpinning methodological contributions, improve our ever-expanding understanding of the North Island of New Zealand, the Hikurangi subduction zone, and the broader Australian-Pacific plate boundary.</p>


Geophysics ◽  
2004 ◽  
Vol 69 (2) ◽  
pp. 533-546 ◽  
Author(s):  
Robert G. Clapp ◽  
Biondo L. Biondi ◽  
Jon F. Claerbout

In areas of complex geology, prestack depth migration is often necessary if we are to produce an accurate image of the subsurface. Prestack depth migration requires an accurate interval velocity model. With few exceptions, the subsurface velocities are not known beforehand and should be estimated. When the velocity structure is complex, with significant lateral variations, reflection‐tomography methods are often an effective tool for improving the velocity estimate. Unfortunately, reflection tomography often converges slowly, to a model that is geologically unreasonable, or it does not converge at all. The large null space of reflection‐tomography problems often forces us to add a sparse parameterization of the model and/or regularization criteria to the estimation. Standard tomography schemes tend to create isotropic features in velocity models that are inconsistent with geology. These isotropic features result, in large part, from using symmetric regularization operators or from choosing a poor model parameterization. If we replace the symmetric operators with nonstationary operators that tend to spread information along structural dips, the tomography will produce velocity models that are geologically more reasonable. In addition, by forming the operators in helical 1D space and performing polynomial division, we apply the inverse of these space‐varying anisotropic operators. The inverse operators can be used as a preconditioner to a standard tomography problem, thereby significantly improving the speed of convergence compared with the typical regularized inversion problem. Results from 2D synthetic and 2D field data are shown. In each case, the velocity obtained improves the focusing of the migrated image.


Sign in / Sign up

Export Citation Format

Share Document