The effect of process parameters on copper powder particle size and shape produced by electrolysis method

2013 ◽  
Vol 15 (2) ◽  
pp. 151-162 ◽  
Author(s):  
Mustafa Boz ◽  
Masood Hasheminiasari
2011 ◽  
Vol 672 ◽  
pp. 271-275 ◽  
Author(s):  
Adem Kurt ◽  
Mustafa Boz

In this study, electrolyze unit, which is used for the production of metal powders, was designed and produced. The production of powder was carried out by using different parameter times of powder removal (5, 10, 20, 30 and 40 min.). The effect of time of powder removal on powder particle size and shape was examined. Laser particle measurement machine and SEM were also used to measure particle size and particle shape respectively. Experimental results indicated that an increase in time of powder removal caused an increase in powder particle size and its shape changed from acicular dentritic to globular dentritic.


2016 ◽  
Vol 43 (2) ◽  
pp. 0203007
Author(s):  
闫岸如 Yan Anru ◽  
杨恬恬 Yang Tiantian ◽  
王燕灵 Wang Yanling ◽  
马志红 Ma Zhihong ◽  
杜云 Du Yun ◽  
...  

2014 ◽  
Vol 936 ◽  
pp. 1694-1700
Author(s):  
Zhi Wei Li ◽  
Kai Yong Jiang ◽  
Fei Wang ◽  
Ji Liang Zhang

This paper mainly introduces the mechanism of microwave heating: electric conduction loss, eddy current loss and arc discharge. The microwave heating behavior of 316 stainless steel powder body which made by gel casting was investigated in the paper. Experiments on different microwave power, powder particle size, and the content of auxiliary heating material showed that the smaller the powder particle size, the larger microwave power and auxiliary heating materials help 316 stainless steel body for sintering.


2014 ◽  
Vol 71 (2) ◽  
Author(s):  
Hussain, S. ◽  
M.K Abdul Hamid ◽  
A.R Mat Lazim ◽  
A.R. Abu Bakar

Brake wear particles resulting from friction between the brake pad and disc are common in brake system. In this work brake wear particles were analyzed based on the size and shape to investigate the effects of speed and load applied to the generation of brake wear particles. Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) was used to identify the size, shape and element compositions of these particles. Two types of brake pads were studied which are non-asbestos organic and semi metallic brake pads. Results showed that the size and shape of the particles generatedvary significantly depending on the applied brake load, and less significantly on brake disc speed. The wear particle becomes bigger with increasing applied brake pressure. The wear particle size varies from 300 nm to 600 µm, and contained elements such as carbon, oxygen, magnesium, aluminum, sulfur and iron.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhaolin Lu ◽  
Xiaojuan Hu ◽  
Yao Lu

Particle morphology, including size and shape, is an important factor that significantly influences the physical and chemical properties of biomass material. Based on image processing technology, a method was developed to process sample images, measure particle dimensions, and analyse the particle size and shape distributions of knife-milled wheat straw, which had been preclassified into five nominal size groups using mechanical sieving approach. Considering the great variation of particle size from micrometer to millimeter, the powders greater than 250 μm were photographed by a flatbed scanner without zoom function, and the others were photographed using a scanning electron microscopy (SEM) with high-image resolution. Actual imaging tests confirmed the excellent effect of backscattered electron (BSE) imaging mode of SEM. Particle aggregation is an important factor that affects the recognition accuracy of the image processing method. In sample preparation, the singulated arrangement and ultrasonic dispersion methods were used to separate powders into particles that were larger and smaller than the nominal size of 250 μm. In addition, an image segmentation algorithm based on particle geometrical information was proposed to recognise the finer clustered powders. Experimental results demonstrated that the improved image processing method was suitable to analyse the particle size and shape distributions of ground biomass materials and solve the size inconsistencies in sieving analysis.


2014 ◽  
Vol 46 (3) ◽  
pp. 365-375
Author(s):  
N. Labus ◽  
S. Mentus ◽  
Z.Z. Djuric ◽  
M.V. Nikolic

The influence of air and nitrogen atmosphere during heating on TiO2 nano and micro sized powders as well as sintered polycrystalline specimens was analyzed. Sintering of TiO2 nano and micro powders in air atmosphere was monitored in a dilatometer. Non compacted nano and micro powders were analyzed separately in air and nitrogen atmospheres during heating using thermo gravimetric (TG) and differential thermal analysis (DTA). The anatase to rutile phase transition temperature interval is influenced by the powder particle size and atmosphere change. At lower temperatures for nano TiO2 powder a second order phase transition was detected by both thermal techniques. Polycrystalline specimens obtained by sintering from nano powders were reheated in the dilatometer in nitrogen and air atmosphere, and their shrinkage is found to be different. Powder particle size influence, as well as the air and nitrogen atmosphere influence was discussed.


Sign in / Sign up

Export Citation Format

Share Document