steel powder
Recently Published Documents


TOTAL DOCUMENTS

687
(FIVE YEARS 160)

H-INDEX

28
(FIVE YEARS 6)

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 30
Author(s):  
Thomas Lindner ◽  
Martin Löbel ◽  
Maximilian Grimm ◽  
Jochen Fiebig

Austenitic steels are characterized by their outstanding corrosion resistance. They are therefore suitable for a wide range of surface protection requirements. The application potential of these stainless steels is often limited by their poor wear resistance. In the field of wrought alloys, interstitial surface hardening has become established for simultaneously acting surface stresses. This approach also offers great potential for improvement in the field of coating technology. The hardening of powder feedstock materials promises an advantage in the treatment of large components and also as a repair technology. In this work, the surface hardening of AISI 316L powder and its processing by thermal spraying is presented. A partial formation of the metastable expanded austenitic phase was observed for the powder particles by low-temperature gas nitrocarburizing. The successful deposition was demonstrated by cold gas spraying. The amount of expanded austenitic phase within the coating structure strongly depends on the processing conditions. Microstructure, corrosion and wear behavior were studied. Process diagnostic methods were used to validate the results.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7544
Author(s):  
Zhentao Wang ◽  
Shanglei Yang ◽  
Yubao Huang ◽  
Cong Fan ◽  
Zeng Peng ◽  
...  

In this paper, 316L stainless steel powder was processed and formed by selective laser melting (SLM). The microstructure of the sample was studied using an optical microscope, and the fatigue failure of the sample and the characteristics of crack initiation and propagation were analyzed, providing a research basis for the application of SLM-316L. Due to the influence of microstructure and SLM process defects, the fatigue cracks of SLM-316L mainly emerged due to defects such as lack of fusion and pores, while the cracks of rolled 316L initiated at the inclusions near the surface of the specimen. After fatigue microcrack initiation of the SLM-316L specimen, due to the existence of shear stress and tear stress, the crack tip was passivated and Z-shaped propagation was formed. The existence of internal defects in SLM-316L made the microcrack initiation random and diverse. At the same time, the existence of defects affected the crack propagation in the form of bending, bifurcation and bridge, which made the main crack propagation deviate from the maximum load direction.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4183
Author(s):  
Alberto Basso ◽  
Yang Zhang ◽  
Jacob Kjeldahl Pløger ◽  
Jon Spangenberg ◽  
Hans Nørgaard Hansen

Freeform injection moulding is a novel technology for powder injection moulding where a sacrificial 3D printed mould (i.e., a soft tooling) is used as an insert in the injection process. The use of 3D printed moulds enable a higher geometrical design flexibility as compared to the conventional injection moulding process. However, there is still very limited knowledge on how the sacrificial soft tooling material and powder suspension handles the increased geometrical complexity during the process. In this study, a stainless steel powder suspension is injected into a geometrically challenging sacrificial mould (viz. a helix structure) that is produced by vat photopolymerization additive manufacturing. Computed tomography is used to quantify the geometrical precision of the mould both before and after injection. In addition, a new numerical model that considers the suspension feedstock is developed to investigate the powder injection moulding process. The numerical results are found to be in qualitative good agreement with the experimental findings in terms of pinpointing critical areas of the structure, thereby highlighting a new pathway for evaluating sacrificial inserts for powder injection moulding with a high geometrical complexity.


Author(s):  
Xinfeng Kan ◽  
Dengcui Yang ◽  
Zhengzhi Zhao ◽  
Jiquan Sun

Abstract Fused Filament Fabrication (FFF) technology is used to create metal parts in this paper. A binder formula is developed for 316L stainless steel powder, composed of polypropylene (PP), styrene ethylene butylene styrene (SEBS) and paraffin wax (PW). The binder is mixed with the 316L stainless steel powder to produce mixture which is then extruded into filament. The optimum binder formula, PP:SEBS:PW=5:2:2, is obtained by orthogonal experiment. After optimization, mixture viscosity is reduced, filament tensile strength is guaranteed, rigidity is improved. The filament can be printed by a desktop FFF printer to obtain green parts. Binder within the green parts can be sufficiently removed by solvent and thermal debinding, and the shape of printed parts can be maintained well. After sintering, shrunken 316L stainless steel parts can be created, some pores distributed inside. With finer metal powder, the relative density of sintered part can be increased to 96%. The research ideas of this paper can provide effective methods for the development and optimization of binder.


Sign in / Sign up

Export Citation Format

Share Document