brake pads
Recently Published Documents


TOTAL DOCUMENTS

451
(FIVE YEARS 197)

H-INDEX

22
(FIVE YEARS 6)

Author(s):  
Rohit Jadhav

Abstract: In the world of automotive, lots of research has been done yet on overall vehicle. Researchers improved every single part of vehicle but wheel is one of the part that hasn’t changed much in automotive history. In case researchers got their desired results, they stopped working on wheel and most of the research has been done on grip of the tire. That’s why there is no innovative research done on wheels. And it is one the biggest part who contribute in vehicles performance and other aspects like comfort and ride quality. Most of the manufacturers never consider and work on aerodynamic part of wheel. So, Different aerodynamics concept vehicles have been studied in the report. The flow around wheels are manage and smoothen in proposed design also it is designed in such a way that air flowing around wheel can easily take inside through Rim design and throw on brake pads as well as on wheel hub for consistently cooling them. They key for success is to manage the flow and keep the wheel functional and attractive. In this paper new wheel is designed and compared with convectional wheel designs. Keywords: Wheel Aerodynamics, Design and Optimization of Wheel, Cooling of Brakes, 3D Wheel design, Aerodynamics of Wheel.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 123
Author(s):  
Vlastimil Matějka ◽  
Mara Leonardi ◽  
Petr Praus ◽  
Giovanni Straffelini ◽  
Stefano Gialanella

In this study, graphitic carbon nitride (g-C3N4, labelled as gCN) was tested in the formulation of copper-free (Cu-free) friction mixtures, which are potentially interesting for brake pad manufacturing. Three formulations of friction composites were prepared starting from a common Cu-free master batch: (i) without graphite, (ii) with graphite and (iii) with gCN. The mixtures were pressed in the form of pins by hot-press moulding. The friction-wear performance of the prepared pins was investigated using a pin-on-disc (PoD) test at room temperature (RT), high temperature (HT) (400 °C) and, again, at room temperature (H-RT). The values of the friction coefficient (µ) for the composites with gCN (or graphite) were as follows: (i) RT test, µRT = 0.52 (0.47); (ii) HT test, µHT = 0.37 (0.37); (iii) RT after the HT tests, µH-RT = 0.49 (0.39). With respect to wear resistance, the samples with graphite performed better than the samples without this solid lubricant. To the best of our knowledge, this is the first report regarding the evaluation of the role of gCN in friction composites designed for automotive brake lining applications. The results indicate the main role of gCN as a soft abrasive.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Y.J. Zhang ◽  
Renzhong Guo ◽  
Yunhui Zhang ◽  
K. Liang

Purpose Based on the mechanical model of typical shear tests, this study aims to propose the test principle and method of freshwater/seawater ice adhesion shear strength of carbon ceramic brake pads for amphibious aircraft, designs and builds the test equipment, prepares the freshwater/seawater ice samples and completes the tests. Design/methodology/approach This study examines the influence of the icing process, mechanism, temperature and freshwater/seawater on ice adhesion shear strength of carbon ceramic brake pads and puts forward a test method for the freshwater/seawater ice adhesion shear strength of amphibious aircraft brake pads. Findings The obtained results examine the influence of the icing process, mechanism, temperature and freshwater/seawater on ice adhesion shear strength of carbon ceramic brake pads. The adhesion shear strength of frozen freshwater and of the seawater of Dalian, Qingdao, Fuzhou and Zhuhai on the surface of aircraft brake pads is measured at –10 to –50°C. It is found that the shear strength of freshwater increases first and then decreases with the decrease of temperature. The adhesion shear strength of seawater; however, increases mainly linear with the decrease of temperature. Originality/value The value of this paper is that the test method proposed and test results for the freshwater/seawater ice adhesion shear strength of amphibious aircraft brake pads provide technical support for the anti-icing design of amphibious aircraft brake devices.


2022 ◽  
pp. 600-619
Author(s):  
Arturo Realyvásquez ◽  
Guadalupe Hernández-Escobedo ◽  
Aide Aracely Maldonado Macías

Development of musculoskeletal disorders caused by awkward postures are present in tasks performed in small companies. Consequently, this chapter evaluates the postural risk level associated to the task of changing brake pads of a forklift, and proposes the design and the implementation of an ergonomic bench that helps to reduce this level of postural risk. As methods, postural risk level corresponding to the task was determined using REBA, whereas anthropometric analysis was developed, and axiomatic design and TRIZ methodologies were used to develop the proposed design. Results showed a REBA score of 8 (high-risk level). The final design is done of nylamid, and it contains some TRIZ principle, such as copying, extraction, and dynamicity. Respect axiomatic design, the bench meets some functional requirements, such as support the user's weight, avoid unsafety conditions, and be adjustable. With the TRIZ principles and functional requirements, this bench will help diminish postural risk level.


2021 ◽  
Vol 80 (6) ◽  
pp. 343-350
Author(s):  
V. A. Nikonov ◽  
V. F. Zubkov ◽  
M. N. Tsibizov ◽  
I. V. Nazarov ◽  
D. V. Gorskiy

The article discusses technical solutions for the creation of an effective design of a brake system for high-speed longwheelbase platforms intended for the transport of containers, as well as for the development of a fundamentally new brake equipment for the pneumatic, electro-pneumatic and mechanical parts of the brake system. Modular braking equipment for the pneumatic and electro-pneumatic parts of the high-speed platform braking system, compactly located under the platform frame, provides technical compatibility when controlling platform brakes as part of not only a high-speed freight train of permanent formation, but also in trains for other purposes, regardless of the location of the platform in the composition of the train. The performance of the braking equipment of each platform in motion and in the parking lot is monitored using pressure sensors and an electronic unit that processes the readings of the sensors and transmits information to the locomotive via one of the wire lines of the electro-pneumatic brake. The brake rigging used on the high-speed platform is arranged in the design of three-axle bogies and provides doublesided pressing on the wheels with typical composite brake pads, automatic regulation and maintenance of the standard clearances between brake pads and wheels. The proposed promising technical solutions make it possible to continuously diagnose the parameters of the brakes of each platform as part of a permanent train, display them on the locomotive monitor and transmit them to the dispatch centers of the Russian Railways infrastructure. Thanks to this, the braking effciency can be increased and the safety of train traffc can be ensured while increasing the permissible travel speeds. In the modern concept of digitalization of the infrastructure of Russian Railways, which provides for the creation in 2021–2025 (and in the future until 2030) of cars in which intelligent technologies should be applied, the braking system of a high-speed platform can be considered as the basis for creating a digitally controlled train — one of the key elements of the digital railway.


Author(s):  
V. Ravlyuk ◽  
Y. Derevianchuk ◽  
S. Pohorielov

A set of theoretical scientific researches is carried out in the work, which proves that with the use of different types of brake pads in passenger cars some elements of the typical design of the mechanical brake system need to be modernized. Analytical calculations of the brake lever transmission of passenger cars are performed on the basis of the 2D scheme-model. Due to this, ways to improve the most important elements of lever transmission in passenger cars under the conditions of composite pads are proposed. The analysis of the forces acting in the typical design of the lever transmission of a passenger car for different types of pads is performed. The strength of important elements of the mechanical brake system is calculated by applying the finite element method. It is proposed to use the capabilities of the software package Femap Siemens PLM Software, which allows you to optimize the elements of the mechanical system of passenger cars. An example of topological optimization of some elements of brake lever transmission of a passenger car is given. By improving the elements of the mechanical brake system for the use of composite pads in passenger cars, greatly simplifies their design, facilitates maintenance and repair, also reduces the weight of the system as a whole and cost and significantly increases the level of traffic safety.


Author(s):  
S Govindarajan ◽  
K Syamkumar ◽  
Ninad Lamture ◽  
Shirish S Kale ◽  
T Ram Prabhu

This paper explores the addition of h-BN and iron to Cu-based brake pads on the performance benefits. It also investigates the effect of graded layering by synthesizing three and four-layer brake pads by powder compaction and sintering route. The top one or two layers are made of Cu-based composite containing Fe, h-BN, and W, while the middle layer is pure Cu and, bottom steel plate. Two different compositions were explored for the composites by varying Fe content. From the two composite compositions, brake pads with single-layer composite or two-layer composite were synthesized. Characterization of brake pad specimens was carried out using density measurements, optical microscopy, scanning electron microscopy, energy dispersive spectroscopy. The brake pads were subjected to simulated braking tests at braking energy/cycle of 60, 96, and 136 K Joules. Wear rate, coefficient of friction, stopping distance, stopping time, and hardness were measured and compared among other brake pads. The brake pad containing single-layer Fe rich Cu composite showed the best performance in the simulated braking tests. EDS analysis of wear debris shows the formation of iron (boride, nitride, oxide) complex which is indicative of a surface with superior dry lubricating properties. This surface is a result of synergetic interaction between h-BN and Fe particles. The iron particles which are scattered in the Cu matrix composite act as low friction regions on the brake pad surface that interrupt the high friction regions on the Cu matrix, thus reducing the local and bulk temperature rise. The two-layer composite brake-pad showed performance intermediate to the two single-layer brake pads. No advantage due to higher thermal conductivities in Fe deficient composite was observed as the two composite layers, showed similar Fe contents in their matrix phases.


Sign in / Sign up

Export Citation Format

Share Document