scholarly journals A Study on Error Compensation on High Precision Machine Tool System Using a 2D Laser Holographic Scale System

2012 ◽  
Vol 6 (6) ◽  
pp. 999-1014 ◽  
Author(s):  
Toru FUJIMORI ◽  
Kayoko TANIGUCHI ◽  
Chris ELLIS ◽  
Tojiro AOYAMA ◽  
Kazuo YAMAZAKI
2010 ◽  
Vol 24 (15n16) ◽  
pp. 2484-2489 ◽  
Author(s):  
SUNG-RYUNG PARK ◽  
SEUNG-HAN YANG

Control over scale, dynamic, environment, and geometric errors in 5-axis machine tool are required to realize a high precision machine tool. Especially geometric errors such as translational, rotational, offset, and squareness errors are important factors which should be considered in the design stages of the machine tool. In this paper, geometric errors are evaluated for different configurations of 5-axis machine tool, namely, 1) table tilting, 2) head tilting, and 3) universal and their error synthesis models are derived. The proposed model is different from the conventional error synthesis model since it considers offset and offset errors. The volumetric error is estimated for every configuration with random geometric errors. Finally, the best configuration, the critical design parameter and error are suggested.


2008 ◽  
Vol 381-382 ◽  
pp. 187-190 ◽  
Author(s):  
Ryo Kobayashi ◽  
Shinya MORITA ◽  
Y. Watanabe ◽  
Y. Uehara ◽  
W. Lin ◽  
...  

A non-contact on-machine measurement system has been developed since various precise machines are getting lighter and smaller; therefore, processing with nano-precision is demanded recently. This system makes possible to measure with high precision without any damages and it is unnecessary for workpieces to attach or detach from a machine tool. Moreover, this system achieves on-machine form error compensation with high precision. On the other hand, the details of the system performances are still unknown. This study focuses on evaluating the performances by the comparison of the results that measured by this system and an existing measurement instrument under various conditions. As a result, this system shows an equivalent capability of measurement with high precision as the existing measurement instrument.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
ZhiHuang Shen ◽  
Bin Yao ◽  
BinQiang Chen ◽  
Wei Feng ◽  
XiangLei Zhang

The machining precision plays an important role in the operation reliability and service life of screw rotors. However, the actual machined rotor profile of screw rotors is different from its theoretical profile due to the errors of the machine tool. This paper proposes a novel method of error tracing and compensation to reduce the machined errors of rotor profile on the basis of the limited sample trials, and the method is based on a matrix of error compensation. The errors of rotor profile are obtained based on limited sample trials machining of screw rotors,and fitted into piecewise smooth data. A matrix of error compensation is established to compute the errors of rotor profile to generate a compensated rotor profile. The compensated rotor profile is then used to regenerate forming tool and a new rotor product is processed on the same machine tool. And the errors of new rotor profile are smaller and can be reduced within (−0.01 mm, 0.01 mm) after compensations. Finally, the actual machining examples illustrate that the method of error compensation can not only satisfy the machining requirement of high-precision rotors, but also has the characteristics of good stability and applicability.


2012 ◽  
Vol 201-202 ◽  
pp. 157-161
Author(s):  
Yao Man Zhang ◽  
Jia Liang Han ◽  
Ren Jun Gu

The performances of the precision machine tool will be influenced by its thermal characteristics seriously, and accurately predict the thermal characteristic of the key component of the machine tool is helpful to improve the design level. The headstock of a high precision CNC lathes has been regarded as the research objects, and the thermal properties and its influence on the performance of the machine tool are studied. Finite element analysis model of the headstock has been constructed, and the simulation calculations of the steady temperature field distribution and thermal equilibrium time of the headstock are calculated, and then the analysis to identify the thermal deformation trends of the spindle assembly and the heat distortion of the headstock are also been done. Some of the key factors that have significant influence on the thermal characteristic of the high precision machine tools are also studied. The analysis reveals that the performances of the machine tool will be influenced by the hot asymmetric, the study lays a foundation for the optimization design and thermal error compensation of the spindle assembly.


Sign in / Sign up

Export Citation Format

Share Document