scholarly journals Effects of model composition and number of image sources on the accuracy of model-based 3D/2D image registration methods for measuring three-dimensional knee kinematics

Author(s):  
Cheng Chung LIN ◽  
Hsuan Yu LU ◽  
Tung Wu LU
2021 ◽  
Vol 11 (20) ◽  
pp. 9415
Author(s):  
Cheng-Chung Lin ◽  
Hsuan-Lun Lu ◽  
Tung-Wu Lu ◽  
Chia-Yang Wang ◽  
Jia-Da Li ◽  
...  

Model-based 3D/2D image registration using single-plane fluoroscopy is a common setup to determine knee joint kinematics, owing to its markerless aspect. However, the approach was subjected to lower accuracies in the determination of out-of-plane motion components. Introducing additional kinematic constraints with an appropriate anatomical representation may help ameliorate the reduced accuracy of single-plane image registration. Therefore, this study aimed to develop and evaluate a multibody model-based tracking (MbMBT) scheme, embedding a personalized kinematic model of the tibiofemoral joint for the measurement of tibiofemoral kinematics. The kinematic model was consisted of three ligaments and an articular contact mechanism. The knee joint activities in six volunteers during isolated knee flexion, lunging, and sit-to-stand motions were recorded with a biplane X-ray imaging system. The tibiofemoral kinematics determined with the MbMBT and mediolateral view fluoroscopic images were compared against those determined using biplane fluoroscopic images. The MbMBT was demonstrated to yield tibiofemoral kinematics with precision values in the range from 0.1 mm to 1.1 mm for translations and from 0.2° to 1.3° for rotations. The constraints provided by the kinematic model were shown to effectively amend the nonphysiological tibiofemoral motion and not compromise the image registration accuracy with the proposed MbMBT scheme.


Author(s):  
Joseph M. Iaquinto ◽  
Richard Tsai ◽  
Michael J. Fassbind ◽  
David R. Haynor ◽  
Bruce J. Sangeorzan ◽  
...  

The ability to accurately measure three dimensional (3D) bone kinematics is key to understanding the motion of the joints of the body, and how such motion is altered by injury, disease, and treatment. Precise measurement of such kinematics is technically challenging. Biplane fluoroscopy is ideally suited to measure bone motion. Such systems have been developed in the past for both radiographic stereo-photogrammetric analysis (RSA) [1] and the more challenging model-based analysis [2]. Research groups have studied the knee [3,4], shoulder [5] and ankle [6] motion with similar techniques. The work presented here is an initial evaluation of the performance of our system, i.e., a validation that this in-house system can detect magnitudes of motion on-par with other existing systems.


1989 ◽  
Author(s):  
Keiichi Kemmotsu ◽  
Yuichi Sasano ◽  
Katsumi Oshitani

2017 ◽  
Vol 17 (06) ◽  
pp. 1750092
Author(s):  
MARYAM HAJIZADEH ◽  
ALIREZA HASHEMI OSKOUEI ◽  
FARZAN GHALICHI ◽  
GISELA SOLE

Analysis of knee kinematics and ground reaction forces (GRFs) is widely used to determine compensatory mechanisms of people with anterior cruciate ligament deficiency (ACLD). However, the practicality of the measurements is subject to their reliability during different trials. This study aims to determine the reliability and repeatability of knee joint rotations and GRFs in people with ACLD during stair ascent. Eight participants with unilateral ACL-deficient knees performed five trials of stair ascent with each leg. The movements were captured by VICON motion analysis system, and GRF components were recorded using force plate. Three-dimensional tibiofemoral joint rotations were calculated. Intraclass correlation coefficient (ICC), standard error of measurement (SEM) and coefficient of multiple correlation (CMC) were calculated ACL-deficient legs showed lower absolute reliability during swing ([Formula: see text]–6.4) than stance phase ([Formula: see text]–2.2) for knee joint rotations. Moderate to high average measure ICCs (0.59–0.98), relative reliability, were achieved for injured and uninjured sides. The results also demonstrated high repeatability for the knee joint rotation ([Formula: see text]–0.97) and GRF ([Formula: see text]–0.99). The outcomes of this study confirmed the consistency and repeatability of the knee joint rotations and GRFs in ACL-deficient subjects. Additionally, ACL-deficient legs exhibited similar levels of reliability and repeatability compared to contralateral legs.


2016 ◽  
Vol 693 ◽  
pp. 1684-1692 ◽  
Author(s):  
Hong Lei Zhang ◽  
Wen He Liao ◽  
Yu Guo ◽  
Wen An Yang

Faced with the problem of generation for 3D machining process model, an approach to generate three dimensional machining process model according to information from design model based on definition is proposed. Compared with the existing methods, the approach utilizes multiple information of design model based on definition and takes many phases into consideration of 3D process model generation. The structure of 3D machining process model is defined and the course of 3D process model generation is researched, including multiple information acquirement, generation of procedure geometric models and annotation. Finally, the framework of system and application for 3D machining process model generation are presented for validation purposes.


Sign in / Sign up

Export Citation Format

Share Document