joint rotation
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 61)

H-INDEX

29
(FIVE YEARS 2)

2022 ◽  
Vol 13 (1) ◽  
pp. 1-13
Author(s):  
Qiaoling Meng ◽  
Mingpeng Jiang ◽  
Zongqi Jiao ◽  
Hongliu Yu

Abstract. Posture transformation is an essential function for multi-posture wheelchairs. To improve the natural motion in posture transformation that is a popular problem in the design of multi-posture wheelchairs because the current wheelchair's posture transformation mechanism cannot remain consistent between the rotation center of the wheelchair and the rotation center of the human body joints. This paper proposes a sitting–standing–lying three-posture bionic transformation mechanism for a smart wheelchair. A human–wheelchair coupling model is described and analyzed according to the biomechanical characteristics of the posture transformation of human beings and their functional requirements. The configuration of the transformation mechanism is chosen by comparing the trails of the wheelchair rotation centers and the corresponding human joint rotation centers. The kinematics of the optimized configuration are discussed in detail to obtain the most bionic motion performance using the multivariable nonlinear constraint optimization algorithm. Finally, the mechanism is designed, and its posture transformation performance is simulated and verified using Adams (Automatic Dynamic Analysis of Mechanical Systems) software.


Author(s):  
Tianyun Yuan ◽  
Yu Song ◽  
Gerald A. Kraan ◽  
Richard HM Goossens

Abstract Measuring the motions of human hand joints is often a challenge due to the high number of degrees of freedom. In this study, we proposed a hand tracking system utilizing action cameras and ArUco markers to continuously measure the rotation angles of hand joints. Three methods were developed to estimate the joint rotation angles. The pos-based method transforms marker positions to a reference coordinate system (RCS) and extracts a hand skeleton to identify the rotation angles. Similarly, the orient-x-based method calculates the rotation angles from the transformed x-orientations of the detected markers in the RCS. In contrast, the orient-mat-based method first identifies the rotation angles in each camera coordinate system using the detected orientations, and then, synthesizes the results regarding each joint. Experiment results indicated that the repeatability errors with one camera regarding different marker sizes were around 2.64 to 27.56 degrees and 0.60 to 2.36 degrees using the marker positions and orientations respectively. When multiple cameras were employed to measure the joint rotation angles, the angles measured by using the three methods were comparable with that measured by a goniometer. Despite larger deviations occurred when using the pos-based method. Further analysis indicated that the results of using the orient-mat-based method can describe more types of joint rotations, and the effectiveness of this method was verified by capturing hand movements of several participants. Thus it is recommended for measuring joint rotation angles in practical setups.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Kazuyoshi Baba ◽  
Daisuke Chiba ◽  
Yu Mori ◽  
Yoshiyuki Kuwahara ◽  
Atsushi Kogure ◽  
...  

Abstract Background This study examined the biomechanics of preventing excessive internal hip joint rotation related to the hip flexion angle. Method An intramedullary nail with a circular plate equipped with a protractor was installed in the femur of nine normal hips. The circular plate was pulled by 3.15 Nm of force in the internal rotation direction. The external rotators were individually resected, finally cutting the ischiofemoral ligament. The cutting order of the external rotators differed on each side to individually determine the internal rotation resistance. The external rotators were resected from the piriformis to the obturator externus in the right hips and the reverse order in the left hips. Traction was performed after excising each muscle and ischiofemoral ligament. Measurements were taken at 0°, 30°, and 60° of hip flexion, and the differences from baseline were calculated. Results For the right hip measurements, the piriformis and ischiofemoral ligament resection significantly differed at 0° of flexion (p = 0.02), each external rotator and the ischiofemoral ligament resections significantly differed at 30° of flexion (p < 0.01), and the ischiofemoral ligament and piriformis and inferior gemellus resections significantly differed at 60° of flexion (p = 0.04 and p = 0.02, respectively). In the left hips, the ischiofemoral ligament and obturator externus, inferior gemellus, and obturator internus resections significantly differed at 0° of flexion (p < 0.01, p < 0.01, and p = 0.01, respectively), as did each external rotator and the ischiofemoral ligament resections at 30° of flexion (p < 0.01). Conclusion The ischiofemoral ligament primarily restricted the internal rotation of the hip joint. The piriformis and obturator internus may restrict internal rotation at 0° and 60° of flexion.


2021 ◽  
Author(s):  
Tomoya Takabayashi ◽  
Mutsuaki Edama ◽  
Takuma Inai ◽  
Yuta Tokunaga ◽  
Masayoshi Kubo

Abstract Background: Females are two times as likely to experience patellofemoral pain syndrome (PFPS) than males; however, the reason for this sex difference remains unclear. Patellofemoral joint (PFJ) stress is believed to contribute to PFPS alterations through knee joint rotation alignment, but the influence of knee joint rotation conditions on PFJ stress is unclear. We aimed to investigate the influence of sex and knee joint rotation alignment on PFJ stress. Methods: Simulation ranges were set to knee joint flexion angles of 10°-45° (common to both sexes) and extension moments of 0-240 Nm (males) and 0-220 Nm (females). The quadriceps force and effective lever arm length at the quadriceps muscle were determined as a function of the knee joint flexion angle and extension moment. The PFJ contact area, which is specific to sex, and knee joint rotation was calculated from cadaver data, and PFJ stress was estimated. Results: In all knee joint rotation conditions, PFJ stress was higher in females than in males. Additionally, PFJ stress in males and females was the largest under neutral conditions compared with other rotation conditions. Conclusion: The results may be useful for understanding the underlying mechanisms contributing to the differences in PFPS in males and females.


2021 ◽  
Author(s):  
Rachel Xiaoyu WEI ◽  
Violet Man-Chi KO ◽  
Elvis Chun-Sing Chui ◽  
Bruma Sai-Chuen FU ◽  
Vivian Wing-Yin HUNG ◽  
...  

Abstract BackgroundHallux valgus (HV) is a common foot deformity that is more prevalent in females, characterised by abnormal adduction of the first metatarsal (MT) and valgus deviation of phalanx on the transverse plane. Increasing evidence indicates that HV is more than a 2D deformity but a 3D one with rotational malalignment. Pronation deformity is seen during clinical examination for HV patients, but the exact origin of this rotational deformity is still unknown. Some attribute it first tarsometatarsal (TMT) joint rotation, while others attribute it to intra-metatarsal bony torsion. In addition, the correlation between the rotational and transverse plane deformity is inconclusive. Identifying the origin of the rotational deformity will help surgeons choose the optimal surgical procedure while also enhancing our understanding of the pathophysiology of Hallux valgus.ObjectiveThis study aims to (1) develop an objective method for measuring the first MT torsion and first TMT joint rotation; (2) investigate the exact location of the coronal deformity in HV; (3) investigate the relationship between the severity of deformity on the transverse and coronal planes as well as the correlation between deformity severity and foot function/symptoms in HV.MethodsAge-matched females with and without HV were recruited at Foot and Ankle Clinic of the Department of Orthopaedics and Traumatology. Computed tomography was conducted for all subjects with additional weight-bearing dorsal-plantar X-ray examination for HV subjects. Demographic information of all subjects was recorded, and foot function was evaluated. Intra-class correlation was used to explore the relationship between deformities on different planes and the deformity severity and functional outcomes, respectively. Independent t-test was used to compare joint rotation degrees and bone torsion degrees.ResultsHallux Valgus patients had more TMT joint rotation but not MT torsion compared to normal controls. TMT joint rotation is significantly correlated with foot functions. No relationship was found between the coronal rotation and the 1,2-intermetatarsal angle (IMA) or Hallux valgus angle (HVA) on the transverse plane.ConclusionOur results indicate that coronal deformities in HV may originate from TMT joint rotation. In addition, the severity of the TMT joint coronal rotation correlates with worse foot function; thus, multi-plane assessment and examination will be important for more precise surgical correction in the future.


Author(s):  
Kayla M. Fewster ◽  
Joyce Guo ◽  
Jackie D. Zehr ◽  
Jeff M. Barrett ◽  
Andrew C. Laing ◽  
...  

Abstract Low back pain (LBP) is frequently reported following rear impact collisions. Knowledge of how the facet joint capsule (FJC) mechanically behaves before and after rear impact collisions may help explain LBP development despite negative radiographic evidence of gross tissue failure. This study quantified the Green strain tensor in the facet joint capsule during rotation and translation range-of-motion tests completed before and following an in vitro simulation of a rear impact collision. Eight FSUs (4 C3-C4, 4 C5-C6) were tested. Following a preload test, FSUs were flexed and extended at 0.5 degrees/second until an ±8 Nm moment was achieved. Anterior and posterior joint translation was then applied at 0.2 mm/s until a target ±400 N shear load was imposed. Markers were drawn on the facet capsule surface and their coordinates were tracked during pre- and post-impact range-of-motion tests. Strain was defined as the change in point configuration relative to the determined neutral joint posture. There were no significant differences (p &gt; 0.05) observed in all calculated FJC strain components in rotation and translation before and after the simulated impact. Our results suggest that LBP development resulting from the initiation of strain-induced mechanoreceptors and nociceptors with the facet joint capsule is unlikely following a severe rear impact collision within the boundaries of physiological joint motion.


Robotica ◽  
2021 ◽  
pp. 1-20
Author(s):  
Jing Yang ◽  
Lingyan Jin ◽  
Zejie Han ◽  
Deming Zhao ◽  
Ming Hu

Abstract As an important index to quantitatively measure the motion performance of a manipulator, motion reliability is affected by many factors, such as joint clearance. The present research utilized a UR10 manipulator as the research object. A factor mapping model for influencing the motion reliability was established. The link flexibility factor, joint flexibility factor, joint clearance factor, and Denavit–Hartenberg (DH) parameters were comprehensively considered in this model. The coupling relationship among the various factors was concisely expressed. Subsequently, the nonlinear response surface method was used to calculate the reliability and sensitivity of the manipulator, which provided an applicable reference for its trajectory planning and motion control. In addition, a data-driven fault diagnosis method based on the kernel principal component analysis (KPCA) was used to verify the motion accuracy and sensitivity of the manipulator, and joint rotation failure was considered as an example to verify the accuracy of the KPCA method. This study on the motion reliability of the manipulator is of great significance for the current motion performance, adjusting the control strategy and optimizing the completion effect of the motion task of a manipulator.


2021 ◽  
pp. 1-10
Author(s):  
Antoine Pfeil ◽  
Marius Siegfarth ◽  
Tim Philipp Pusch ◽  
Laurent Barbé ◽  
François Geiskopf ◽  
...  

Abstract Design of fluidic actuators remain challenging in specific contexts such as the medical field, when solutions have for instance to be compatible with the stringent requirements of magnetic resonance imaging. In this paper, an innovative design of hydraulically-actuated revolute joint is introduced. The design originality is linked to the use of multimaterial additive manufacturing for its production. Hydraulic actuation and polymer manufacturing are selected to have compatibility with the medical context. A design taking advantage of the process capabilities is proposed. The proposed component associates a large stroke compliant revolute joint and miniature pistons. An helical rack-and-pinion mechanism is integrated to the compliant joint to control the joint rotation. A specific gear geometry is elaborated to minimize the joint size. It is experimentally characterized in terms of range of motion, stiffness and available torque, to discuss the suitability of the component as a fluidic actuator. The component offers an interesting compactness, range of motion and the process is shown to be adequate for the design of functional systems.


2021 ◽  
Author(s):  
Takabayashi Tomoya ◽  
Edama Mutsuaki ◽  
Inai Takuma ◽  
Tokunaga Yuta ◽  
Kubo Masayoshi

Abstract Background: Females are two times as likely to experience patellofemoral pain syndrome (PFPS) than males; however, the reason for this sex difference remains unclear. Patellofemoral joint (PFJ) stress is believed to contribute to PFPS alterations through knee joint rotation alignment, but the influence of knee joint rotation conditions on PFJ stress is unclear. We aimed to investigate the influence of sex and knee joint rotation alignment on PFJ stress. Methods: Simulation ranges were set to knee joint flexion angles of 10°-45° (common to both sexes) and extension moments of 0-240 Nm (males) and 0-220 Nm (females). The quadriceps force and effective lever arm length at the quadriceps muscle were determined as a function of the knee joint flexion angle and extension moment. The PFJ contact area, which is specific to sex, and knee joint rotation was calculated from cadaver data, and PFJ stress was estimated. Results: In all knee joint rotation conditions, PFJ stress was higher in females than in males. Additionally, PFJ stress in males and females was the largest under neutral conditions compared with other rotation conditions. Conclusion: The results may be useful for understanding the underlying mechanisms contributing to the differences in PFPS in males and females.


Sign in / Sign up

Export Citation Format

Share Document