scholarly journals A Design Method for Modified PID Controllers for Multiple-Input/Multiple-Output Plants

2012 ◽  
Vol 6 (2) ◽  
pp. 131-144 ◽  
Author(s):  
Takaaki HAGIWARA ◽  
Kou YAMADA ◽  
Shun MATSUURA ◽  
Satoshi AOYAMA
2019 ◽  
Vol 46 (6) ◽  
pp. 0614014
Author(s):  
于洋 Yang Yu ◽  
乔灵博 Lingbo Qiao ◽  
游燕 Yan You ◽  
赵自然 Ziran Zhao

2011 ◽  
Vol 497 ◽  
pp. 246-254
Author(s):  
Takaaki Hagiwara ◽  
Kou Yamada ◽  
Satoshi Aoyama ◽  
An Chinh Hoang

In this paper, we examine the parameterization of all plants stabilized by a proportionalcontroller for multiple-input/multiple-output plant. A proportional controller is a kind of Proportional-Integral-Derivative (PID) controllers. PID controller structure is the most widely used one in industrialapplications. Recently, if stabilizing PID controllers for the plant exist, the parameterization of allstabilizing PID controllers has been considered. However, no paper examines the parameterizationof all plants stabilized by a PID controller. In this paper, we clarify the parameterization of all plantsstabilized by a proportional controller for multiple-input/multiple-output plant. In addition, we presentthe parameterization of all stabilizing proportional controllers for the plant stabilized by a proportionalcontroller.


2013 ◽  
Vol 62 (4) ◽  
pp. 1646-1654 ◽  
Author(s):  
Haiquan Wang ◽  
Yabo Li ◽  
Xiang-Gen Xia ◽  
Shunlan Liu

In this paper, a multiple-input-multiple-output (MIMO) system with finite-bit feedback first proposed by Love-Heath is considered, where a transmitted signal consists of a precode followed by an orthogonal space-time block code (OSTBC), such as Alamouti code. A new design criterion and a corresponding design method of precoders are proposed. Simulations show that the precoders obtained by our proposed criterion and method perform better than the existing ones. Furthermore, since our proposed precoders have a layered structure, their designs can be implemented in the simplest Grassmannian manifold. Moreover, a fast encoding algorithm can be applied, which can greatly reduce the complexity of codeword selection. In this paper, we also propose non-unitary precoders and their design criterion and method based on the performance analysis and the special property of an OSTBC. Interestingly, non-unitary precoders can significantly improve performance over unitary precoders.


Author(s):  
Zhongxiang Chen ◽  
Tatsuya Sakanushi ◽  
Kou Yamada ◽  
Yun Zhao ◽  
Satoshi Tohnai

The modified repetitive control system is a type of servomechanism for a periodic reference input. When modified repetitive control design methods are applied to real systems, the influence of uncertainties in the plant must be considered. In some cases, uncertainties in the plant make the modified repetitive control system unstable, even though the controller was designed to stabilize the nominal plant. Recently, the parameterization of all robust stabilizing modified repetitive controllers was obtained by Yamada et al. In addition, Yamada et al. proposed the parameterization of all robust stabilizing modified repetitive controllers for time-delay plants. However, no paper has proposed the parameterization of all robust stabilizing modified repetitive controllers for multiple-input/multiple-output time-delay plants. In this paper, we expand the result by Yamada et al. and propose the parameterization of all robust stabilizing modified repetitive controllers for multipleinput/multiple-output time-delay plants.


Sign in / Sign up

Export Citation Format

Share Document