scholarly journals Study of Critical Flow : Completely Separated Gas-Liquid Two-Phase Flow

1973 ◽  
Vol 16 (101) ◽  
pp. 1741-1749 ◽  
Author(s):  
Yoshiro KATTO ◽  
Yukio SUDO
1993 ◽  
Vol 115 (4) ◽  
pp. 772-777
Author(s):  
D. E. Nikitopoulos

A simple two-fluid formulation is used to investigate compressibility effects and Mach number scaling for equilibrium, evaporating two-phase flow. The definition of the local two-phase Mach number emerges from a critical flow analysis. Comparisons of the theoretical critical mass flux with existing experimental data obtained in steam-water flows show very good agreement for moderate and high qualities over a wide critical pressure range. Within this quality range the predicted critical mass flux is quite insensitive to the velocity ratio. The analysis confirms previous observations, based on homogeneous flow models, indicating that in variable area ducts the critical state does not occur at a geometrical throat. Results of existing critical flow experiments in slowly diverging ducts are discussed in the light of this conclusion. A way from the neighborhood of the flash horizon, pressure-drop and kinetic energy changes are shown to scale with similar local Mach functions as those of single-phase compressible flow. Existing experimental data from vertical-upwards and horizontal two-phase flows in pipes indicate that the Mach number calculated on the basis of the local homogeneous state provides the optimum scaling performance. Scaling of the same experimental data using a Mach number based on the local nonhomogeneous state provides results that are in reasonably good agreement with the theoretical scaling guidelines and predictions, but is handicapped by considerable scatter in the scaled experimental variables.


1971 ◽  
Vol 93 (4) ◽  
pp. 413-421 ◽  
Author(s):  
D. F. D’Arcy

Theoretical values for the propagation speed of small pressure disturbances through two-phase fluid have been derived by a method analogous to the well-known method for single-phase fluids and using the well-known separated-flow model of two-phase flow. Since the liquid and vapor phases in general flow at different mean speeds, it is appropriate to compute the propagation speed relative to the laboratory frame of reference, not relative to the fluid as is usually done in single phase. With the extra degree of freedom in two-phase flow, two distinct speeds are found for propagation both upstream and downstream, each representing compatible thermodynamic behavior of both phases. Comparisons between calculations based on the model, and several published sets of experimental values of the speed of sound, tend to confirm the theory at low and at high void fractions. Both propagation speeds have been observed in experiments. Also by analogy with the single-phase case, critical flow is predicted to occur when the upstream propagation speed relative to the laboratory is zero, i.e., when pressure waves cannot travel into the opening from which the flow issues. Flow calculations based on the model under these conditions show agreement with published experimental critical-flow measurements in the regions of low and high void fractions. Thus, a satisfactory explanation of the critical-flow phenomenon in two-phase fluids is obtained in these regions. From the analytical–experimental comparisons it appears that of the two propagation speeds and critical flows, one is observed at low void fraction, and the other at high void fraction. In the intermediate range, the theory and experiment differ and it is probable that the separated-flow model does not adequately represent the flow regimes occurring in this range.


Sign in / Sign up

Export Citation Format

Share Document