scholarly journals Absorption of Water Vapor into Lithium Bromide-water Solution Film Falling along a Vertical Plate

1986 ◽  
Vol 29 (258) ◽  
pp. 4218-4222
Author(s):  
Kazuma URAKAWA ◽  
Itsuki MORIOKA ◽  
Masanori KIYOTA
2018 ◽  
Vol 194 ◽  
pp. 01008
Author(s):  
Maria V. Bartashevich

Mathematical model of absorption on a horizontal film of lithium bromide water solution flowing on a cooled wall under the action of shear stress is numerically investigated in this paper. The shear stress on the film surface is set by the motion of co-current or counter-current surrounding saturated water vapor flow. It is known that the external shear stress is caused by the motion of surrounding saturated water vapor intensificate the process of non-isothermal absorption in comparison with the fixed-vapor regime. Our calculations have shown that at low values of heat flux the film temperature and vapor concentration in the solution downstream increases due to absorption.


2018 ◽  
Vol 194 ◽  
pp. 01007
Author(s):  
Maria V. Bartashevich

Mathematical model of conjugated heat and mass transfer in absorption on the entrance region of the semi-infinite liquid film of lithium bromide water solution is investigated for different values of Froude number. The calculations shown that larger values of Froude number corresponds to a smaller thickness of the falling film. It was demonstrated that for large values of the Froude number the heat transfer from the surface is greater than for smaller values.


1996 ◽  
Vol 118 (1) ◽  
pp. 45-49 ◽  
Author(s):  
T. A. Ameel ◽  
H. M. Habib ◽  
B. D. Wood

An analytical solution is presented for the effect of air (nonabsorbable gas) on the heat and mass transfer rates during the absorption of water vapor (absorbate) by a falling laminar film of aqueous lithium bromide (absorbent), an important process in a proposed open-cycle solar absorption cooling system. The analysis was restricted to the entrance region where an analytical solution is possible. The model consists of a falling film of aqueous lithium bromide flowing down a vertical wall which is kept at uniform temperature. The liquid film is in contact with a gas consisting of a mixture of water vapor and air. The gas phase is moving under the influence of the drag from the falling liquid film. The governing equations are written with a set of interfacial and boundary conditions and solved analytically for the two phases. Heat and mass transfer results are presented for a range of uniform inlet air concentrations. It was found that the concentration of the nonabsorbable gas increases sharply at the liquid gas interface. The absorption of the absorbate in the entrance region showed a continuous reduction with an increase in the amount of air.


2016 ◽  
Vol 25 (1) ◽  
pp. 24-31 ◽  
Author(s):  
V. E. Nakoryakov ◽  
S. Ya. Misyura

Sign in / Sign up

Export Citation Format

Share Document