scholarly journals In-service Degradation and Life Prediction of Coatings for Advanced Land-based Gas Turbine Buckets

2003 ◽  
Vol 46 (4) ◽  
pp. 635-641 ◽  
Author(s):  
Narayana Sastry CHERUVU ◽  
Kwai Shing CHAN ◽  
Gerald Robert LEVERANT
Author(s):  
Takashi Ogata

Polycrystalline conventional casting (CC) and directionally solidified (DS) Ni base superalloys are widely used as gas turbine blade materials. It was reported that the surface of a gas turbine blade is subjected to a biaxial tensile-compressive fatigue loading during a start-stop operation, based on finite element stress analysis results. It is necessary to establish the life prediction method of these superalloys under biaxial fatigue loading for reliable operations. In this study, the in-plane biaxial fatigue tests with different phases of x and y directional strain cycles were conducted on both CC and DS Ni base superalloys (IN738LC and GTD111DS) at high temperatures. The strain ratio ϕ was defined as the ratio between the x and y directional strains at 1/4 cycle and was varied from 1 to −1. In ϕ=1 and −1. The main cracks propagated in both the x and y directions in the CC superalloy. On the other hand, the main cracks of the DS superalloy propagated only in the x direction, indicating that the failure resistance in the solidified direction is weaker than that in the direction normal to the solidified direction. Although the biaxial fatigue life of the CC superalloy was correlated with the conventional Mises equivalent strain range, that of the DS superalloy depended on ϕ. The new biaxial fatigue life criterion, equivalent normal strain range for the DS superalloy was derived from the iso-fatigue life curve on a principal strain plane defined in this study. Fatigue life of the DS superalloy was correlated with the equivalent normal strain range. Fatigue life of the DS superalloy under equibiaxial fatigue loading was significantly reduced by introducing compressive strain hold dwell. Life prediction under equibiaxial fatigue loading with the compressive strain hold was successfully made by the nonlinear damage accumulation model. This suggests that the proposed method can be applied to life prediction of the gas turbine DS blades, which are subjected to biaxial fatigue loading during operation.


1975 ◽  
Vol 12 (4) ◽  
pp. 360-365 ◽  
Author(s):  
S. A. Sattar ◽  
C. V. Sundt

Author(s):  
Firat Irmak ◽  
Navindra Wijeyeratne ◽  
Taejun Yun ◽  
Ali Gordon

Abstract In the development and assessment of critical gas turbine components, simulations have a crucial role. An accurate life prediction approach is needed to estimate lifespan of these components. Nickel base superalloys remain the material of choice for gas turbine blades in the energy industry. These blades are required to withstand both fatigue and creep at extreme temperatures during their usage time. Nickel-base superalloys present an excellent heat resistance at high temperatures. Presence of chromium in the chemical composition makes these alloys highly resistant to corrosion, which is critical for turbine blades. This study presents a flexible approach to combine creep and fatigue damages for a single crystal Nickel-base superalloy. Stress and strain states are used to compute life calculations, which makes this approach applicable for component level. The cumulative damage approach is utilized in this study, where dominant damage modes are capturing primary microstructural mechanism associated with failure. The total damage is divided into two distinctive modules: fatigue and creep. Flexibility is imparted to the model through its ability to emphasize the dominant damage mechanism which may vary among alloys. Fatigue module is governed by a modified version of Coffin-Manson and Basquin model, which captures the orientation dependence of the candidate material. Additionally, Robinson’s creep rupture model is applied to predict creep damage in this study. A novel crystal visco-plasticity (CVP) model is used to simulate deformation of the alloy under several different types of loading. This model has capability to illustrate the temperature-, rate-, orientation-, and history-dependence of the material. A user defined material (usermat) is created to be used in ANSYS APDL 19.0, where the CVP model is applied by User Programmable Feature (UPF). This deformation model is constructed of a flow rule and internal state variables, where the kinematic hardening phenomena is captured by back stress. Octahedral, cubic and cross slip systems are included to perform simulations in different orientations. An implicit integration process that uses Newton-Raphson iteration scheme is utilized to calculate the desired solutions. Several tensile, low-cycle fatigue (LCF) and creep experiments were conducted to inform modeling parameters for the life prediction and the CVP models.


Author(s):  
H. Hempel ◽  
H. Wiest

The paper considers the design and the application of ceramic components in a high temperature gas turbine, which is being developed as an alternative for passenger-car propulsion. Silicon nitride turbine wheels were analyzed using 3-dimensional finite element methods. Calculations of temperatures and stresses were carried out for several steady-state and transient load conditions. Time dependent reliability was also computed using the theory of Weibull including subcritical crack growth. The results of these calculations are presented and discussed. The basic theory for ceramic life prediction methodology is reviewed, including the relative importance of various parameters. From the results, conclusions are derived for ceramic design. Finally some operating-experiences of ceramic turbine wheels are reported.


2001 ◽  
Vol I.01.1 (0) ◽  
pp. 285-286
Author(s):  
Akihiro ITO ◽  
Kazuhiro SUGIYAMA ◽  
Nobuo SHINOHARA ◽  
Yuji SUGITA ◽  
Shigeo SAKURAI ◽  
...  

Author(s):  
M. P. Enright ◽  
R. C. McClung ◽  
S. J. Hudak ◽  
W. L. Francis

The empirical models commonly used for probabilistic life prediction do not provide adequate treatment of the physical parameters that characterize fatigue damage development. For these models, probabilistic treatment is limited to statistical analysis of strain-life regression fit parameters. In this paper, a model is proposed for life prediction that is based on separate nucleation and growth phases of total fatigue life. The model was calibrated using existing smooth specimen strain-life data, and it has been validated for other geometries. Crack nucleation scatter is estimated based on the variability associated with smooth specimen and fatigue crack growth data, including the influences of correlation among crack nucleation and growth phases. The influences of crack nucleation and growth variability on life and probability of fracture are illustrated for a representative gas turbine engine disk geometry.


Sign in / Sign up

Export Citation Format

Share Document