scholarly journals Correlation between Cleavage Fracture Toughness and Charpy Impact Properties in the Transition Temperature Range of Reactor Pressure Vessel Steels

2004 ◽  
Vol 47 (3) ◽  
pp. 479-485 ◽  
Author(s):  
Kunio ONIZAWA ◽  
Masahide SUZUKI
Author(s):  
Kai Sun ◽  
Xiaoyong Wu ◽  
Guoyun Li ◽  
Bang Wen

Over the past decade, many generation III pressurized water reactor power plants have been under construction in China. Most reactor pressure vessel steels for these plants construction are homemade. Historically, Charpy V-notch specimens are predominantly used to monitor the toughness of RPV steels. However, fracture toughness provides the quantitative predictions of the critical crack size and the allowable stress in structural integrity assessment. This paper evaluates the fracture toughness properties of China manufactured RPV steels directly measured in transition temperature range by using master curve method. Some specimens were irradiated in the High Flux Engineering Test Reactor. The influences of loading rate, test temperature, specimen configuration and neutron irradiation on T0 were also investigated. The experimental results show that China manufactured RPV steels exhibit good fracture toughness properties.


Author(s):  
Hiroshi Matsuzawa ◽  
Toru Osaki

Nine Reactor Pressure Vessel (RPV) Steels and four RPV weld were irradiated up to 1.2 × 1024n/m2 fast neutron fluence (E>1MeV), and their fracture toughness and Charpy impact energy were measured. As chemical compositions, such as Cu, are known to affect the fracture toughness reduction due to neutron exposure, the above steels were fabricated by changing chemical composition widely to cover the chemical composition of the RPV materials of the operating Japanese nuclear power plants. 2.7 mm thick compact specimens were used to measure the upper shelf fracture toughness of highly irradiated materials, and their Charpy upper shelf energy was also measured. By correlating Charpy upper shelf energy to fracture toughness, the upper shelf fracture toughness evaluation formulae for highly irradiated reactor pressure vessel steels were developed. Both compact and V-notched Charpy impact specimens were irradiated in a test reactor. The fast neutron flux above 1MeV was about 5 × 1016n/(m2s). Charpy impact specimens made of Japanese PWR reference material containing 0.09w% Cu were irradiated simultaneously. The upper shelf energy of the reference material up to the medium fluence level showed little difference in the reduction of upper shelf energy to that which had been in the operating plant and which was irradiated to the same fluence. The developed correlation formulae have been adopted in the Japan Electric Association Code as new formulae to predict the fracture toughness in the upper shelf region of reactor pressure vessels. They will be applied to time limited ageing analysis of low upper shelf reactor pressure vessels in Japan, on a concrete technical basis in very high fluence regions.


Sign in / Sign up

Export Citation Format

Share Document