Fracture Toughness of Highly Irradiated Pressure Vessel Steels in the Upper Shelf Temperature

Author(s):  
Hiroshi Matsuzawa ◽  
Toru Osaki

Nine Reactor Pressure Vessel (RPV) Steels and four RPV weld were irradiated up to 1.2 × 1024n/m2 fast neutron fluence (E>1MeV), and their fracture toughness and Charpy impact energy were measured. As chemical compositions, such as Cu, are known to affect the fracture toughness reduction due to neutron exposure, the above steels were fabricated by changing chemical composition widely to cover the chemical composition of the RPV materials of the operating Japanese nuclear power plants. 2.7 mm thick compact specimens were used to measure the upper shelf fracture toughness of highly irradiated materials, and their Charpy upper shelf energy was also measured. By correlating Charpy upper shelf energy to fracture toughness, the upper shelf fracture toughness evaluation formulae for highly irradiated reactor pressure vessel steels were developed. Both compact and V-notched Charpy impact specimens were irradiated in a test reactor. The fast neutron flux above 1MeV was about 5 × 1016n/(m2s). Charpy impact specimens made of Japanese PWR reference material containing 0.09w% Cu were irradiated simultaneously. The upper shelf energy of the reference material up to the medium fluence level showed little difference in the reduction of upper shelf energy to that which had been in the operating plant and which was irradiated to the same fluence. The developed correlation formulae have been adopted in the Japan Electric Association Code as new formulae to predict the fracture toughness in the upper shelf region of reactor pressure vessels. They will be applied to time limited ageing analysis of low upper shelf reactor pressure vessels in Japan, on a concrete technical basis in very high fluence regions.

Author(s):  
Toru Osaki ◽  
Hiroshi Matsuzawa

Reconstitution in this paper means to constitute the original size V-notched Charpy impact specimen, which is made of the irradiated insert cut out from broken piece and un-irradiated tabs welded to the insert. It is a promising technique to secure an adequate number of surveillance specimens for long-term operation of nuclear power plants. Every Japanese nuclear power plant has its own surveillance test program, and is operated considering its unique surveillance test results along with the general reduction tendency of fracture toughness. This practice should be continued and enhanced if possible, after the full use of originally installed specimens, because its fracture toughness is lower than before. Reconstitution of V-notched Charpy impact specimens to the original shape by using a short insert was studied. Charpy absorption energy is generally shifted by reconstitution, if the insert length is as short as 10 mm. Reconstitution with a short insert is necessary when the transverse property of the original specimen is required although only the longitudinal surveillance specimen is installed as in some early constructed reactor pressure vessels in Japan. This case is important when the reactor pressure vessel is suspected to be a so-called low upper shelf toughness reactor pressure vessel. The minimum required insert length to avoid affect on the specimen properties depends on the Charpy absorption energy of the insert and reconstitution weld condition. Correlation between Charpy absorption energy and plastic deformation size, and short time annealing properties of irradiated pressure vessel steels were investigated. A method to evaluate the minimum required insert length was proposed, which depends on the expected Charpy absorption energy and thermal transient during reconstitution. It was demonstrated that the reconstituted specimens of 10 mm-long irradiated inserts, whose upper shelf absorption energy was 69J and required insert length was 9.5mm, showed little shift of upper shelf absorption energy.


Sign in / Sign up

Export Citation Format

Share Document