scholarly journals Heat and Mass Transfer from Air with HIgh Water Vapor Content (Latent Heat Recovery from Flue Gas)

Author(s):  
Hiroshi TANIGUCHI ◽  
Kazuhiko KUDO ◽  
Qi-Ri HWANG ◽  
Akihiro FUJII
2015 ◽  
Vol 57 (33) ◽  
pp. 15276-15284 ◽  
Author(s):  
Hongxin Geng ◽  
Long Lin ◽  
Pingli Li ◽  
Chunyao Zhang ◽  
Heying Chang

Author(s):  
Kwangkook Jeong ◽  
Harun Bilirgen ◽  
Edward Levy

Power plants release a large amount of water vapor into the atmosphere through the stack. The flue gas can be a potential source for obtaining much needed cooling water for a power plant. If a power plant could recover and reuse a portion of this moisture, it could reduce its total cooling water intake requirement. One of the most practical way to recover water from flue gas is to use a condensing heat exchanger. The power plant could also recover latent heat due to condensation as well as sensible heat due to lowering the flue gas exit temperature. Additionally, harmful acids released from the stack can be reduced in a condensing heat exchanger by acid condensation. Condensation of vapors in flue gas is a complicated phenomenon since heat and mass transfer of water vapor and various acids simultaneously occur in the presence of non-condensable gases such as nitrogen and oxygen. Design of a condenser depends on the knowledge and understanding of the heat and mass transfer processes. A computer program for numerical simulations of water (H2O) and sulfuric acid (H2SO4) condensation in a flue gas condensing heat exchanger was developed using MATLAB. Governing equations based on mass and energy balances for the system were derived to predict variables such as flue gas exit temperature, cooling water outlet temperature, mole fraction and condensation rates of water and sulfuric acid vapors. The equations were solved using an iterative solution technique with calculations of heat and mass transfer coefficients and physical properties. An experimental study was carried out in order to yield data for validation of modeling results. Parametric studies for both modeling and experiments were performed to investigate the effects of parameters such as flue gas flow rate, cooling water flow rate, inlet cooling water temperature and tube configurations (bare and finned tubes) on condensation efficiency. Predicted results of water and sulfuric acid vapor condensation were compared with experimental data for model validation, and this showed agreement between experimental data and predictions to within a few percent. The most important parameters affecting performance of the condensing heat exchangers was the ratio of cooling water to flue gas flow rates, since this determines how much heat the cooling water can absorb. The computer program simultaneously calculates both water vapor condensation and sulfuric acid condensation in flue gas along downstream. Modeling results for prediction of sulfuric acid vapor concentration in the flue gas were compared with measured data obtained by the controlled condensation method. An analytical model of sulfuric acid condensation for oil-firing showed two trends — steep reduction within the high temperature heat exchanger and smooth reduction within lower temperature heat exchanger, which is in agreement with experimental data.


2018 ◽  
Author(s):  
Dexin Wang ◽  
Richard Ciora ◽  
Chengxian Lin ◽  
Zhanhua Ma

2002 ◽  
Author(s):  
Masahiro Osakabe ◽  
Sachiyo Horiki ◽  
Tsugue Itoh ◽  
Ikuya Haze

Sign in / Sign up

Export Citation Format

Share Document