scholarly journals Hydraulic Performance of an S-Draft Tube for a Low-Head Axial Flow Turbine (How to Improve the Performance and Unsteady Secondary Flow in a S-Draft Tube)

Author(s):  
Yukimaru SHIMIZU ◽  
Takashi KUBOTA ◽  
Yoshisato WAKASHIMA ◽  
Shogo NAKAMURA
1986 ◽  
Vol 52 (474) ◽  
pp. 585-592 ◽  
Author(s):  
Yukimaru SHIMIZU ◽  
Takashi KUBOTA ◽  
Fusanobu NAKAMURA ◽  
Shogo NAKAMURA

1991 ◽  
Vol 57 (536) ◽  
pp. 1305-1310
Author(s):  
Yukimaru SHIMIZU ◽  
Hiroyuki ISHIDA ◽  
Yoshiki FUTAKI ◽  
Takashi KUBOTA

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4618
Author(s):  
Antonio Mariani ◽  
Gaetano Crispino ◽  
Pasquale Contestabile ◽  
Furio Cascetta ◽  
Corrado Gisonni ◽  
...  

Overtopping-type wave power conversion devices represent one of the most promising technology to combine reliability and competitively priced electricity supplies from waves. While satisfactory hydraulic and structural performance have been achieved, the selection of the hydraulic turbines and their regulation is a complex process due to the very low head and a variable flow rate in the overtopping breakwater set-ups. Based on the experience acquired on the first Overtopping BReakwater for Energy Conversion (OBREC) prototype, operating since 2016, an activity has been carried out to select the most appropriate turbine dimension and control strategy for such applications. An example of this multivariable approach is provided and illustrated through a case study in the San Antonio Port, along the central coast of Chile. In this site the deployment of a breakwater equipped with OBREC modules is specifically investigated. Axial-flow turbines of different runner diameter are compared, proposing the optimal ramp height and turbine control strategy for maximizing system energy production. The energy production ranges from 20.5 MWh/y for the smallest runner diameter to a maximum of 34.8 MWh/y for the largest runner diameter.


1987 ◽  
Vol 109 (2) ◽  
pp. 229-236 ◽  
Author(s):  
O. P. Sharma ◽  
T. L. Butler

This paper describes the development of a semi-empirical model for estimating end-wall losses. The model has been developed from improved understanding of complex endwall secondary flows, acquired through review of flow visualization and pressure loss data for axial flow turbomachine cascades. The flow visualization data together with detailed measurements of viscous flow development through cascades have permitted more realistic interpretation of the classical secondary flow theories for axial turbomachine cascades. The re-interpreted secondary flow theories together with integral boundary layer concepts are used to formulate a calculation procedure for predicting losses due to the endwall secondary flows. The proposed model is evaluated against data from published literature and improved agreement between the data and predictions is demonstrated.


Author(s):  
Qiang Pan ◽  
Weidong Shi ◽  
Desheng Zhang ◽  
BPM van Esch ◽  
Ruijie Zhao

With environmental awareness growing in many countries, governments are taking measures to reduce mortality of migrating fish in pumping stations. Manufacturers seek to develop pumps that are less damaging to fish and still provide good hydraulic performance, but little is known about the implications design modifications may have on internal flow characteristics and overall hydraulic performance. In this paper, an integrated design method is proposed that combines a validated blade strike model for fish damage and a computational fluid dynamics method to assess the pump performance. A redesign of an existing, conventional, axial flow pump is presented as an example in this paper. It shows how the design of the impeller blades was modified stepwise in order to reduce fish mortality while its hydraulic performance was monitored. Computational fluid dynamics analysis of the flow near the hub of the highly skewed blades indicated that unconventional design modifications were required to ensure optimum flow behavior. In the final fish-friendly design, the risk of fish mortality has reduced considerably while the hydraulic performance of the pump is still acceptable for practical application.


Sign in / Sign up

Export Citation Format

Share Document