scholarly journals Optimal control of random vibration by the use of an active dynamic vibration absorber. Experimental considerations on the effect of the control with feedforward link.

Author(s):  
Kazuo YOSHIDA ◽  
Taro SHIMOGO ◽  
Hidekazu NISHIMURA
2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Xiaoling Jin ◽  
M. Z. Q. Chen ◽  
Zhilong Huang

This paper concentrates on the random vibration suppression of a regular straight beam by using an inerter-based dynamic vibration absorber. For a wideband random point-driven straight beam with an inerter-based dynamic vibration absorber, the distribution of mean-square velocity response along the axis of the straight beam as well as the mean kinetic energy of the whole beam are first analytically derived through the classical linear random vibration theory. Two optimization objectives are established to determine the optimal design parameters: (1) minimizing the maximal mean-square velocity along the axis of the straight beam, which corresponds to the maximal mean kinetic energy density along the axis and (2) minimizing the mean kinetic energy of the whole beam. Numerical search gives the optimal location and the associated optimal parameters of the inerter-based dynamic vibration absorber. Numerical results for a simply supported straight beam illustrate the better performance of an inerter-based dynamic vibration absorber than a traditional dynamic vibration absorber. Parametric sensitivity studies for the robustness analysis of the beam response to deviations from the optimal parameters are conducted. The optimal location locates on the force-excited point, while the suboptimal location locates on its symmetry position. Furthermore, the optimal and suboptimal locations remain invariable regardless of the upper cutoff frequency of band-limited noise, which is fairly important to the location optimization of the inerter-based dynamic vibration absorber.


Author(s):  
Toru Watanabe ◽  
Kazuo Yoshida ◽  
Yasuyuki Fukunishi

Abstract In this paper, active simultaneous control of vertical and horizontal vibrations of base-isolated buildings is dealt with. Bidirectional active dynamic vibration absorber is introduced as the vibration reduction equipment, while the feedforward augmented linear optimal control law is adopted to obtain controller. Numerical calculations and control experiments are carried out and the effectiveness of presented vibration reduction system is confirmed.


2019 ◽  
Vol 52 (15) ◽  
pp. 531-536
Author(s):  
Takeshi Mizuno ◽  
Takahito Iida ◽  
Yuji Ishino ◽  
Masaya Takasaki ◽  
Daisuke Yamaguchi

Sign in / Sign up

Export Citation Format

Share Document