mean kinetic energy
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 14)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 28 (3) ◽  
Author(s):  
V. S. Travkin ◽  
T. V. Belonenko ◽  
◽  

Purpose. The Lofoten Basin is one of the most energetic zones of the World Ocean characterized by high activity of mesoscale eddies. The study is aimed at analyzing different components of general energy in the basin, namely the mean kinetic and vortex kinetic energy calculated using the integral of the volume of available potential and kinetic energy of the Lofoten Vortex, as well as variability of these characteristics. Methods and Results. GLORYS12V1 reanalysis data for the period 2010–2018 were used. The mean kinetic energy and the eddy kinetic one were analyzed; and as for the Lofoten Vortex, its volume available potential and kinetic energy was studied. Mesoscale activity of eddies in winter is higher than in summer. Evolution of the available potential energy and kinetic energy of the Lofoten Vortex up to the 1000 m horizon was studied. It is shown that the vortex available potential energy exceeds the kinetic one by an order of magnitude, and there is a positive trend with the coefficient 0,23·1015 J/year. It was found that in the Lofoten Basin, the intermediate layer from 600 to 900 m made the largest contribution to the potential energy, whereas the 0–400 m layer – to kinetic energy. The conversion rates of the mean kinetic energy into the vortex kinetic one, and the mean available potential energy into the vortex available potential one (baroclinic and barotropic instability) were analyzed. It is shown that the first type of transformation dominates in summer, while the second one is characterized by its increase in winter. Conclusions. The vertical profile shows that kinetic energy of eddies in winter is higher than in summer. The available potential energy of a vortex is by an order of magnitude greater than the kinetic energy. Increase in the available potential energy is confirmed by a significant positive trend and by decrease of the vortex Burger number. The graphs of the barotropic instability conversion rate demonstrate the multidirectional flows in the vortex zone with the dipole structure observed in a winter period, and the tripole one – in summer. The barotropic instability highest intensity is observed in summer. The baroclinic instability is characterized by intensification of the regime in winter that is associated with weakening of stratification in this period owing to winter convection.


2021 ◽  
Vol 37 (3) ◽  
Author(s):  
V. S. Travkin ◽  
◽  
T. V. Belonenko ◽  

Purpose. The Lofoten Basin is one of the most energetic zones of the World Ocean characterized by high activity of mesoscale eddies. The study is aimed at analyzing different components of general energy in the basin, namely the mean kinetic and vortex kinetic energy calculated using the integral of the volume of available potential and kinetic energy of the Lofoten Vortex, as well as variability of these characteristics. Methods and Results. GLORYS12V1 reanalysis data for the period 2010–2018 were used. The mean kinetic energy and the eddy kinetic one were analyzed; and as for the Lofoten Vortex, its volume available potential and kinetic energy were studied. The mesoscale activity of eddies in winter is higher than in summer. Evolution of the available potential energy and kinetic energy of the Lofoten Vortex up to the 1000 m horizon was studied. It is shown that the vortex available potential energy exceeds the kinetic one by an order of magnitude, and there is a positive trend with the coefficient 0,23⋅1015 J/year. It was found that in the Lofoten Basin, the intermediate layer from 600 to 900 m made the largest contribution to the potential energy, whereas the 0–400 m layer – to kinetic energy. The conversion rates of the mean kinetic energy into the vortex kinetic one and the mean available potential energy into the vortex available potential one (barotropic and baroclinic instability) were analyzed. It is shown that the first type of transformation dominates in summer, while the second one is characterized by its increase in winter. Conclusions. The vertical profile shows that the kinetic energy of eddies in winter is higher than in summer. The available potential energy of a vortex is by an order of magnitude greater than the kinetic energy. An increase in the available potential energy is confirmed by a significant positive trend and by a decrease in the vortex Burger number. The graphs of the barotropic instability conversion rate demonstrate the multidirectional flows in the vortex zone with the dipole structure observed in a winter period, and the tripole one – in summer. The barotropic instability highest intensity is observed in summer. The baroclinic instability is characterized by intensification of the regime in winter that is associated with weakening of stratification in this period owing to winter convection.


2021 ◽  
Author(s):  
Ilias Sibgatullin ◽  
Stepan Elistratov ◽  
Eugeny Ermanyuk

<div>Ocean abyss is an example of a system with continuous stratification subject to large-scale tidal forcing. Owing to specific dispersion relation of internal waves, the domains bounded by sloping boundaries may support wave patterns with wave rays converging to closed trajectories (geometric attractors) as result of iterative focusing reflections. Previously the behavior of kinetic energy in wave attractors has been investigated in domains with comparable scales of depth and horizontal length. As the geometric aspect ratio of the domain increases, the dynamic pattern of energy focusing may significantly evolve both in laminar and turbulent regimes. The present paper shows that the energy density in domains with large aspect ratio can significantly increase. In numerical simulations the input forcing has been introduced at global scale by prescribing small-amplitude deformations of the upper bound of the liquid domain. The evolution of internal wave motion in such system has been computed numerically for different values of the forcing amplitude. The behavior of the large-aspect-ratio system has been compared to the well-studied case of the system with depth-to-length ratio of order unity.  A number of most typical situations has been analyzed in terms of behavior of integral mechanical quantities such as total dissipation, mean kinetic energy and energy fluctuations in laminar and turbulent cases. The relative mean kinetic energy (normalized by the kinetic energy of the liquid domain undergoing rigid-body oscillations with the amplitude of the wavemaker), may increase by order of magnitude as compared to low-aspect-ratio system.<br>It was shown previously, that in the case of aspect ratio close to unity, the transition to wave turbulence regime is associated with a cascade of triadic wave-wave interactions. Now it is shown that for large aspect ratios the energy cascade in the system is due to generation of superharmonic waves corresponding to integer (including zero) multiples of the forcing frequency. As forcing amplitude increases beyond certain value, an abrupt change is observed in behavior of relative mean kinetic energy and spectra, accompanied with appearance of additional harmonic components corresponding to half-integer (including 1/2) and integer multiples of the forcing frequency.  </div><div> </div>


2020 ◽  
Vol 153 (13) ◽  
pp. 134306
Author(s):  
Alessio Bocedi ◽  
Giovanni Romanelli ◽  
Carla Andreani ◽  
Roberto Senesi

2020 ◽  
Author(s):  
João Bettencourt ◽  
Carlos Guedes Soares

<p>The Azores Current-Front system coincides with the northern limit of the subtropical gyre in  the Eastern North Atlantic. The mean zonal jet is positioned south of the Azores archipelago  and extends from west of the mid-atlantic ridge to the Gulf of Cadiz, where it partially  turns south. North of the main jet, a sub-surface counter-current is found, flowing westwards. The associated thermal front separates the warm subtropical waters from the colder subpolar waters. The instantaneous flow in the Azores Current/Front system is characterized by the presence of meandering currents with length scales of 200 km that regularly shed anticyclonic warm water and cyclonic cold water eddies to the north and south of the mean jet axis, respectively, due to vortex stretching and the planetary beta effect. The time scale of eddy shedding is 100-200 days. On the meandering arms of the current, downwelling <br>and upwelling cells are found and sharp thermal gradients are formed and a residual poleward heat transport is observed. The instability cycle that originates the mesoscale meanders and the eddies is well-known from quasi-geostrophic and primitive equation models initialized from a basic baroclinic state: a first phase of baroclinic instability feeds on available potential energy to raise eddy kinetic energy levels, that, in a second phase feed the mean kinetic energy by Reynolds stress convergence. The cycle repeats itself as long as the APE reservoir is filled at the end of each cycle.</p><p>However, seasonal variability of the zonal jet dynamics has not been addressed before and it can provide valuable insights in to the variations of the Eastern North Atlantic between the subtropical and subpolar gyres. We use a primitive equation regional ocean model of the Eastern Central North Atlantic with realistic climatological wind and thermal forcing to study the yearly cycle of meandering, eddy shedding and restoration of the mean jet in the Azores/Current system. We observe an semi-annual cycle in the jet's kinetic energy with maxima in Summer/Winter and minima in early Spring/Autumn. Potential energy conversion by baroclinic instability occurs throughout the year but is predominant in the first half of the year. The mean kinetic energy draws from the turbulent kinetic energy through Reynolds stress convergence in periods of 50 - 100 days, that are followed by short barotropic instability periods. During Winter, Reynolds stress convergence, and thus mean jet reinforcement from the mesoscale eddy field, occurs along the jet meridional extent, in the top 500 m of the water column, but from Spring to Autumn it is observed only in the southern flank of the mean jet axis.</p>


2020 ◽  
Author(s):  
Song Li ◽  
Nuno Serra ◽  
Detlef Stammer

<p>Despite recent progress in measuring the ocean eddy field with satellite missions at the mesoscale (order of 100 km), containing the major fraction of ocean kinetic energy, many questions still remain regarding the generation, conversion and dissipation mechanisms of eddy kinetic energy (K<sub>e</sub>). In this work, we use the output from an idealized 500-m resolution ocean numerical simulation to study the conversion of K<sub>e</sub> in the absence and presence of wind stress forcing. In contrast to the result of the unforced run, K<sub>e</sub> increased approximately nine times in the mixed layer and considerably in the pycnocline in the forced run. Eddies and filaments were seen to re-stratify the mixed layer and wind-induced turbulence at the base of the mixed layer promoted its deepening and therefore dramatically enhanced the exchange between K<sub>e</sub> and eddy available potential energy (P<sub>e</sub>). The wind stress forcing additionally affected the conversion processes between P<sub>e</sub> and mean kinetic energy (K<sub>m</sub>). The wind also excited inertial and superinertial motions throughout almost the whole water column. Although those motions played a major role in the conversion between P<sub>e</sub> and K<sub>e</sub>, the net effect by inertial and superinertial flows was almost null. In addition, we found an asymmetric character in kinetic energy conversion in eddies. Cyclonic and anti-cyclonic eddies showed different behaviour regarding conversion from P<sub>e</sub> and K<sub>e</sub>, which was positive on the high K<sub>e</sub> part in the anti-cyclonic eddy but negative in the cyclonic eddy.</p>


2020 ◽  
Author(s):  
Sayahnya Roy ◽  
Alexei Sentchev ◽  
François G. Schmitt ◽  
Patrick Augustin ◽  
Marc Fourmentin

<p>This study shows the comparison between the sea-breeze circulation (SBC) day and normal day turbulent characteristics and the Reynolds stress anisotropy in the lower atmospheric region. The Reynolds stress tensor is responsible for the dissipation and transport of mean kinetic energy. The variability of the turbulent kinetic energy due to the Reynolds stress anisotropy modulates the air quality. A 20 Hz Ultrasonic anemometer was deployed in the coastal area of northern France to measure the temporal wind variability for the duration of one year five months.</p><p>The SBC was detected by a change in wind direction from the West to the East during the day time. We found that the axial component of the turbulent kinetic energy is higher than the other two through an axisymmetric expansion, and energy ellipsoid has a cigar shape due to SBC. During this time the dominance of small scale zonal turbulent motions was observed. Also, the probability of a higher degree of wind anisotropy due to SBC generates large mean kinetic energy within the lower troposphere. Moreover, the production of larger negative turbulent kinetic energy due to SBC was evident.</p>


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1078 ◽  
Author(s):  
Jacob R. West ◽  
Sanjiva K. Lele

The theoretical limit for wind turbine performance, the so-called Betz limit, arises from an inviscid, irrotational analysis of the streamtube around an actuator disk. In a wind farm in the atmospheric boundary layer, the physics are considerably more complex, encompassing shear, turbulent transport, and wakes from other turbines. In this study, the mean flow streamtube around a wind turbine in a wind farm is investigated with large eddy simulations of a periodic array of actuator disks in half-channel flow at a range of turbine thrust coefficients. Momentum and mean kinetic energy budgets are presented, connecting the energy budget for an individual turbine to the wind farm performance as a whole. It is noted that boundary layer turbulence plays a key role in wake recovery and energy conversion when considering the entire wind farm. The wind farm power coefficient is maximized when the work done by Reynolds stress on the periphery of the streamtube is maximized, although some mean kinetic energy is also dissipated into turbulence. This results in an optimal value of thrust coefficient lower than the traditional Betz result. The simulation results are used to evaluate Nishino’s model of infinite wind farms, and design trade-offs described by it are presented.


2020 ◽  
Vol 13 ◽  
pp. 173
Author(s):  
Ch. C. Moustakidis ◽  
S. E. Massen

The influence of correlations of uniform Fermi systems (nuclear matter, electron gas and liquid 3He) on Shannon's information entropy, S, is studied. It is found that, for three different Fermi systems with different particle interactions, the correlated part of S (Soor) depends on the correlation parameter of the systems or on the discontinuity gap of the momentum distribution through two parameter expressions. The values of the parameters characterize the strength of the correlations. A two parameter expression also holds between Scor and the mean kinetic energy (K) of the Fermi system. The study of thermal effects on the uncorrelated electron gas leads to a relation between the thermal part of S (Sthermai) and the fundamental quantities of temperature, thermodynamical entropy and the mean kinetic energy. It is found that, in the case of low temperature limit, the expression connecting Sthermai with Κ is the same to the one which connects Scor with K. Thus, regardless of the reason (correlations or thermal) that changes K, S takes almost the same value.


Sign in / Sign up

Export Citation Format

Share Document