2007 Prediction of Vibration Response by Impedance Method

2007 ◽  
Vol 2007.20 (0) ◽  
pp. 125-126
Author(s):  
Fumiko SAKO ◽  
Yukihiro ADACHI ◽  
Qinzhong SHI ◽  
Shigemasa ANDO ◽  
Masahiro TSUCHIHASHI ◽  
...  
2000 ◽  
Vol 123 (2) ◽  
pp. 262-268 ◽  
Author(s):  
C. C. Cheng ◽  
P. W. Wang

An impedance-based system modeling technique has been developed to determine the output forces of multiple piezoelectric (PZT) patch actuators on an active structure to produce a known vibration response. In the analysis of the dynamic response of a structure driven by multiple PZT patches, the proposed model includes not only the dynamic interactions between the PZT patch and the host structure but also the impedance couplings among PZT patches. Therefore this approach can apply to a structure with multiple PZT actuators. Furthermore, the bending stiffness and the thickness of a PZT patch that are proved to be important as increases of excitation frequency are included in the proposed impedance model. Examples are given to demonstrate how to synthesize a known vibration response and how to suppress vibration response at an arbitrary location on structures using this technique.


Pneumologie ◽  
2007 ◽  
Vol 61 (S 1) ◽  
Author(s):  
F Hoffmeyer ◽  
V Harth ◽  
J Bünger ◽  
J Henry ◽  
A Dehlinger ◽  
...  

Author(s):  
Iago Smanio Saad ◽  
Gilmar Guimaraes ◽  
CLEUDMAR ARAÚJO ◽  
Gabriela Lima Menegaz

2021 ◽  
pp. 107754632110036
Author(s):  
Shihui Huo ◽  
Hong Huang ◽  
Daoqiong Huang ◽  
Zhanyi Liu ◽  
Hui Chen

Turbo pump is one of the elements with the most complex flow of liquid rocket engine, and as an important component of turbo pump, an impeller is the weak point affecting its reliability. In this study, a noncontact modal characteristic identification technique was proposed for the liquid oxygen pump impeller. Modal characteristics of the impeller under three different submerged media, air, pure water, and brine with same density as liquid oxygen, were tested based on the noncontact modal identification technology. Submersion state directly affects the modal frequencies and damping ratio. The transient vibration response characteristics of the impeller excited by the unsteady flow field was achieved combining with unsteady flow field analysis and transient dynamic analysis in the whole flow passage of the liquid oxygen pump. Vibration responses at different positions of the impeller show 10X and 20X frequencies, and the amplitude at the root of short blade is significant, which needs to be paid more attention in structural design and fatigue evaluation.


Sign in / Sign up

Export Citation Format

Share Document