scholarly journals F601 Flow Analysis of Tsunami by SPH Method

2011 ◽  
Vol 2011.24 (0) ◽  
pp. _F-80_-_F-81_
Author(s):  
Yuzuru SAKAI
Keyword(s):  
2012 ◽  
Vol 37 (1) ◽  
pp. 894-902 ◽  
Author(s):  
Jianjun Ye ◽  
Jian Yang ◽  
Jinyang Zheng ◽  
Xianting Ding ◽  
Ieong Wong ◽  
...  

2005 ◽  
Vol 2005.18 (0) ◽  
pp. 579-580 ◽  
Author(s):  
Yuzuru SAKAI ◽  
Jun IMASATO ◽  
Shunta KAWASAKI ◽  
Nobuki YAMAGATA

2004 ◽  
Vol 2004.17 (0) ◽  
pp. 771-772
Author(s):  
Kensuke Sekizawa ◽  
Yuzuru SAKAI ◽  
Akihiko Yamashita

Author(s):  
Mahsa Tajdari ◽  
Bruce L. Tai

The objective of this study is to investigate smoothed particle hydrodynamics (SPH) method in simulating drilling process of both brittle and ductile materials. Drilling simulation is commonly performed by finite element method (FEM); however, it is challenging when applied to small debris generated by brittle materials or special cutting tools, due to the inability to capture small chip interactions. SPH was originally developed for flow analysis but has been recently used in cutting research. In this study, SPH is compared with FEM by four case studies. The results show that SPH can simulate ductile drilling, but the chip formation and forces are not as reasonable as FEM. On the other hand, SPH can capture small fragmented debris in brittle material drilling, which cannot be done by FEM with an equivalent mesh size. SPH method is also found to be affected by the distance between the particles (element size in FEM) and numerical errors on the free surfaces, both of which require further investigation beyond this paper.


1963 ◽  
Vol 42 (12) ◽  
pp. 742 ◽  
Author(s):  
John L. Burbidge

2020 ◽  
Vol 14 (4) ◽  
pp. 7446-7468
Author(s):  
Manish Sharma ◽  
Beena D. Baloni

In a turbofan engine, the air is brought from the low to the high-pressure compressor through an intermediate compressor duct. Weight and design space limitations impel to its design as an S-shaped. Despite it, the intermediate duct has to guide the flow carefully to the high-pressure compressor without disturbances and flow separations hence, flow analysis within the duct has been attractive to the researchers ever since its inception. Consequently, a number of researchers and experimentalists from the aerospace industry could not keep themselves away from this research. Further demand for increasing by-pass ratio will change the shape and weight of the duct that uplift encourages them to continue research in this field. Innumerable studies related to S-shaped duct have proven that its performance depends on many factors like curvature, upstream compressor’s vortices, swirl, insertion of struts, geometrical aspects, Mach number and many more. The application of flow control devices, wall shape optimization techniques, and integrated concepts lead a better system performance and shorten the duct length.  This review paper is an endeavor to encapsulate all the above aspects and finally, it can be concluded that the intermediate duct is a key component to keep the overall weight and specific fuel consumption low. The shape and curvature of the duct significantly affect the pressure distortion. The wall static pressure distribution along the inner wall significantly higher than that of the outer wall. Duct pressure loss enhances with the aggressive design of duct, incursion of struts, thick inlet boundary layer and higher swirl at the inlet. Thus, one should focus on research areas for better aerodynamic effects of the above parameters which give duct design with optimum pressure loss and non-uniformity within the duct.


Sign in / Sign up

Export Citation Format

Share Document