Large-scale Aerodynamics Simulation for a Running Group of Bicycles Using Mesh-refined Lattice Boltzmann Method

2018 ◽  
Vol 2018.31 (0) ◽  
pp. 189
Author(s):  
Yuta HASEGAWA ◽  
Takayuki AOKI
Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 148
Author(s):  
Seyed Amin Nabavizadeh ◽  
Himel Barua ◽  
Mohsen Eshraghi ◽  
Sergio D. Felicelli

A multi-distribution lattice Boltzmann Bhatnagar–Gross–Krook (BGK) model with a multiple-grid lattice Boltzmann (MGLB) model is proposed to efficiently simulate natural convection over a wide range of Prandtl numbers. In this method, different grid sizes and time steps for heat transfer and fluid flow equations are chosen. The model is validated against natural convection in a square cavity, since extensive benchmark solutions are available for that problem. The proposed method can resolve the computational difficulty in simulating problems with very different time scales, in particular, when using extremely low or high Prandtl numbers. The technique can also enhance computational speed and stability while keeping the simplicity of the BGK method. Compared with the conventional lattice Boltzmann method, the simulation time can be reduced up to one-tenth of the time while maintaining the accuracy in an acceptable range. The proposed model can be extended to other lattice Boltzmann collision models and three-dimensional cases, making it a great candidate for large-scale simulations.


Author(s):  
Anoosheh Niavarani-Kheirier ◽  
Masoud Darbandi ◽  
Gerry E. Schneider

The main objective of the current work is to utilize Lattice Boltzmann Method (LBM) for simulating buoyancy-driven flow considering the hybrid thermal lattice Boltzmann equation (HTLBE). After deriving the required formulations, they are validated against a wide range of Rayleigh numbers in buoyancy-driven square cavity problem. The performance of the method is investigated on parallel machines using Message Passing Interface (MPI) library and implementing domain decomposition technique to solve problems with large order of computations. The achieved results show that the code is highly efficient to solve large scale problems with excellent speedup.


2019 ◽  
Vol 85 (870) ◽  
pp. 18-00441-18-00441
Author(s):  
Yuta HASEGAWA ◽  
Takayuki AOKI ◽  
Hiromichi KOBAYASHI ◽  
Keita SHIRASAKI

2020 ◽  
Vol 10 (13) ◽  
pp. 4543 ◽  
Author(s):  
Takeshi Asai ◽  
Yasumi Nakanishi ◽  
Nakaba Akiyama ◽  
Sungchan Hong

Various studies have been conducted on the aerodynamic characteristics of nonspinning and spinning soccer balls. However, the vortex structures in the wake of the balls are almost unknown. One of the main computational fluid dynamics methods used for the analysis of vortex structures is the lattice Boltzmann method as it facilitates high-precision analysis. Studies to elucidate the dominant vortex structure are important because curled shots and passes involving spinning balls are frequently used in actual soccer games. In this study, we identify the large-scale dominant vortex structure of a soccer ball and investigate the stability of the structure using the lattice Boltzmann method, wind tunnel tests, and free-flight experiments. One of the dominant vortex structures in the wake of both nonspinning and spinning balls is a large-scale counter-rotating vortex pair. The side force acting on a spinning ball stabilizes when the fluctuation of the separation points of the ball is suppressed by the rotation of the ball. Thus, although a spinning soccer ball is deflected by the Magnus effect, its trajectory is regular and stable, suggesting that a spinning ball can be aimed accurately at the outset of its course.


2014 ◽  
Vol 670-671 ◽  
pp. 659-663
Author(s):  
Yong Guang Chen ◽  
Li Wan

The immersed boundary method (IBM) for the simulation of the interaction between fluid and flexible boundaries in combination with the lattice Boltzmann method (LBM) is described. The LBM is used to compute the flow field, the interaction between fluid and flexible boundaries to be treated by the IBM. To analyze the key factors of combination method and implementation process. An example is presented to verify the efficiency and accuracy of the described algorithm. These will provide a base for large scale simulation involving flexible boundaries in the future.


2016 ◽  
Vol 26 (4) ◽  
pp. 735-747
Author(s):  
Kai Feldhusen ◽  
Ralf Deiterding ◽  
Claus Wagner

Abstract Utilizing the Boussinesq approximation, a double-population incompressible thermal lattice Boltzmann method (LBM) for forced and natural convection in two and three space dimensions is developed and validated. A block-structured dynamic adaptive mesh refinement (AMR) procedure tailored for the LBM is applied to enable computationally efficient simulations of moderate to high Rayleigh number flows which are characterized by a large scale disparity in boundary layers and free stream flow. As test cases, the analytically accessible problem of a two-dimensional (2D) forced convection flow through two porous plates and the non-Cartesian configuration of a heated rotating cylinder are considered. The objective of the latter is to advance the boundary conditions for an accurate treatment of curved boundaries and to demonstrate the effect on the solution. The effectiveness of the overall approach is demonstrated for the natural convection benchmark of a 2D cavity with differentially heated walls at Rayleigh numbers from 103 up to 108. To demonstrate the benefit of the employed AMR procedure for three-dimensional (3D) problems, results from the natural convection in a cubic cavity at Rayleigh numbers from 103 up to 105 are compared with benchmark results.


Author(s):  
H. Sajjadi ◽  
M. Salmanzadeh ◽  
G. Ahmadi ◽  
S. Jafari

In this study the hybrid RANS/LES turbulence model within the framework of the Lattice Boltzmann method (LBM) was used to study turbulent indoor airflows. In this approach the near wall region was simulated by the RANS model, while the bulk of the domain was analyzed using the LES model with the LBM approach. In the near wall layer where RANS was used, the k-ε turbulence model was employed. For the k-ε turbulence model in conjunction with the LBM two population balance equations for k and ε were used. The present simulation results for the airflow showed good agreement with the experimental data and the earlier numerical results for the hybrid RANS/LES. The results showed that the hybrid model properly predicted the large scale turbulence fluctuation velocities in the bulk of the flow region. In addition, the computational time for the hybrid model is less than that of the LES method.


Sign in / Sign up

Export Citation Format

Share Document