Parameter determination method of three-dimensional vibration analysis model for railway vehicle

2019 ◽  
Vol 2019 (0) ◽  
pp. 517 ◽  
Author(s):  
Yuki AKIYAMA ◽  
Tadao TAKIGAMI ◽  
Takayoshi KAMADA
2019 ◽  
Vol 58 (4) ◽  
pp. 545-568 ◽  
Author(s):  
Yuki Akiyama ◽  
Takahiro Tomioka ◽  
Tadao Takigami ◽  
Ken-ichiro Aida ◽  
Takayoshi Kamada

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Robello Samuel ◽  
Dongping Yao

In high-risk, high-cost environments, such as ultra-deep waters, refining advanced technologies for the successful completion of wells is paramount. Challenges are still very much associated with complex bottomhole assemblies (BHAs) and with the vibration of the drillstring when used with hole enlarging tools. These tools with complex profiles and designs become additional excitation sources of vibration. The more widespread use of downhole tools for both directional telemetry and logging-while-drilling (LWD) applications, as part of the front line data acquisition system within the drilling process, has made reliability a prime area of importance. This paper presents and validates an existing model to predict severe damaging vibrations. It also provides analysis techniques and guidelines to successfully avoid the vibration damage to downhole tools and to their associated downhole assemblies when using hole enlarging tools, such as hole openers and underreamers. The dynamic analysis model is based on forced frequency response (FFR) to solve for resonant frequencies. In addition, a mathematical formulation includes viscous, axial, torsional, and structural damping mechanisms. With careful consideration of input parameters and the judicious analysis of results, we demonstrated that drillstring vibration can be avoided by determining the three-dimensional vibrational response at selected excitations that are likely to cause them. In addition, the analysis provides an estimate of relative bending stresses, shear forces, and lateral displacements for the assembly used. Based on the study, severe vibrations causing potentially damaging operating conditions that had been a major problem in nearby wells were avoided. Steps required to estimate the operating range of the drilling parameter such as weight on bit and rotational speeds to mitigate and avoid the downhole tool failures due to vibration are given. Extensive simulations were performed to compare the data from the downhole vibration sensors; this paper includes severe vibration incidence data from three case studies in which the model estimated, predicted, and avoided severe vibration (Samuel, R., et al., 2006, “Vibration Analysis Model Prediction and Avoidance: A Case History,” Paper SPE 102134 Presented at the IADC India Conference, Mumbai, India, Oct. 16–18; Samuel, R., 2010, “Vibration Analysis for Hole Enlarging Tools” SPE 134512, Annual Technical Conference, Florence, Italy).


2012 ◽  
Vol 24 (3) ◽  
pp. 326-333 ◽  
Author(s):  
Yu-Chi Chen ◽  
Wen-Ching Ko ◽  
Han-Lung Chen ◽  
Hsu-Ching Liao ◽  
Wen-Jong Wu ◽  
...  

We propose a model to give us a method to investigate the characteristic three-dimensional directivity in an arbitrarily configured flexible electret-based loudspeaker. In recent years, novel electret loudspeakers have attracted much interest due to their being lightweight, paper thin, and possessing excellent mid- to high-frequency responses. Increasing or decreasing the directivity of an electret loudspeaker makes it excellent for adoption to many applications, especially for directing sound to a particular area or specific audio location. Herein, we detail a novel electret loudspeaker that possesses various directivities and is based on various structures of spacers instead of having to use multichannel amplifiers and a complicated digital control system. In order to study the directivity of an electret loudspeaker based on an array structure which can be adopted for various applications, the horizontal and vertical polar directivity characteristics as a function of frequency were simulated by a finite-element analysis model. To validate the finite-element analysis model, the beam pattern of the electret loudspeaker was measured in an anechoic room. Both the simulated and experimental results are detailed in this article to validate the various assertions related to the directivity of electret cell-based smart speakers.


1994 ◽  
Author(s):  
Chang-Seok Han ◽  
Kang-Woo Lee ◽  
Don-Boo Cho ◽  
Young-Jin Cheon ◽  
Seung-Dong Yeo

2016 ◽  
Vol 2016 ◽  
pp. 1-30 ◽  
Author(s):  
Dongyan Shi ◽  
Yunke Zhao ◽  
Qingshan Wang ◽  
Xiaoyan Teng ◽  
Fuzhen Pang

This paper presents free vibration analysis of open and closed shells with arbitrary boundary conditions using a spectro-geometric-Ritz method. In this method, regardless of the boundary conditions, each of the displacement components of open and closed shells is represented simultaneously as a standard Fourier cosine series and several auxiliary functions. The auxiliary functions are introduced to accelerate the convergence of the series expansion and eliminate all the relevant discontinuities with the displacement and its derivatives at the boundaries. The boundary conditions are modeled using the spring stiffness technique. All the expansion coefficients are treated equally and independently as the generalized coordinates and determined using Rayleigh-Ritz method. By using this method, a unified vibration analysis model for the open and closed shells with arbitrary boundary conditions can be established without the need of changing either the equations of motion or the expression of the displacement components. The reliability and accuracy of the proposed method are validated with the FEM results and those from the literature.


2014 ◽  
Vol 21 (4) ◽  
pp. 571-587 ◽  
Author(s):  
Hamid Reza Saeidi Marzangoo ◽  
Mostafa Jalal

AbstractFree vibration analysis of functionally graded (FG) curved panels integrated with piezoelectric layers under various boundary conditions is studied. A panel with two opposite edges is simply supported, and arbitrary boundary conditions at the other edges are considered. Two different models of material property variations based on the power law distribution in terms of the volume fractions of the constituents and the exponential law distribution of the material properties through the thickness are considered. Based on the three-dimensional theory of elasticity, an approach combining the state space method and the differential quadrature method (DQM) is used. For the simply supported boundary conditions, closed-form solution is given by making use of the Fourier series expansion, and applying the differential quadrature method to the state space formulations along the axial direction, new state equations about state variables at discrete points are obtained for the other cases such as clamped or free-end conditions. Natural frequencies of the hybrid curved panels are presented by solving the eigenfrequency equation, which can be obtained by using edges boundary conditions in this state equation. The results obtained for only FGM shell is verified by comparing the natural frequencies with the results obtained in the literature.


Sign in / Sign up

Export Citation Format

Share Document