Vibration control using a roller-type vibration absorber with a rolling elliptic surface

2020 ◽  
Vol 2020 (0) ◽  
pp. 123
Author(s):  
Yuji HARATA ◽  
Ryohei NISHIYAMA ◽  
Yuki NAKAO ◽  
Takashi IKEDA
Author(s):  
P Bonello ◽  
K H Groves

An adaptive tuned vibration absorber (ATVA) can retune itself in response to a time-varying excitation frequency, enabling effective vibration attenuation over a range of frequencies. For a wide tuning range the ATVA is best realized through the use of a beam-like structure whose mechanical properties can be adapted through servo-actuation. This is readily achieved either by repositioning the beam supports (‘moveable-supports ATVA’) or by repositioning attached masses (‘moveable-masses ATVA’), with the former design being more commonly used, despite its relative constructional complexity. No research to date has addressed the fact that the effective mass of such devices varies as they are retuned, thereby causing a variation in their attenuation capacity. This article derives both the tuned frequency and effective mass characteristics of such ATVAs through a unified non-dimensional modal-based analysis that enables the designer to quantify the expected performance for any given application. The analysis reveals that the moveable-masses concept offers significantly superior vibration attenuation. Motivated by this analysis, a novel ATVA with actuator-incorporated moveable masses is proposed, which has the additional advantage of constructional simplicity. Experimental results from a demonstrator correlate reasonably well with the theory, and vibration control tests with logic-based feedback control demonstrate the efficacy of the device.


2021 ◽  
Author(s):  
Yu SUN ◽  
Jinsong Zhou ◽  
Dao Gong ◽  
Yuanjin Ji

Abstract To absorb the vibration of the carbody of the high-speed train in multiple degrees of freedom, a multi-degree of freedom dynamic vibration absorber (MDOF DVA) is proposed. Installed under the carbody, the natural vibration frequency of the MDOF DVA from each DOF can be designed as a DVA for each single degree of freedom of the carbody. Hence, a 12-DOF model including the main vibration system and a MDOF DVA is established, and the principle of Multi-DOF dynamic vibration absorption is analyzed by combining the design method of single DVA and genetic algorithm. Based on a high-speed train dynamics model including an under-carbody MDOF DVA, the vibration control effect on each DOF of the MDOF DVA is analyzed by the virtual excitation method. Moreover, a high static and low dynamic stiffness (HSLDS) mount is proposed based on a cam–roller–spring mechanism for the installation of the MDOF DVA due to the requirement of the low vertical dynamic stiffness. From the dynamic simulation of a non-linear model in time-domain, the vibration control performance of the MDOF DVA installed with nonlinear HSLDS mount on the carbody is analyzed. The results show that the MDOF DVA can absorb the vibration of the carbody in multiple degrees of freedom effectively, and improve the running ride quality of the vehicle.


Author(s):  
Philip Bonello ◽  
Michael J Brennan ◽  
Stephen J Elliott ◽  
Julian F.V Vincent ◽  
George Jeronimidis

An adaptive tuned vibration absorber (ATVA) with a smart variable stiffness element is capable of retuning itself in response to a time-varying excitation frequency, enabling effective vibration control over a range of frequencies. This paper discusses novel methods of achieving variable stiffness in an ATVA by changing shape, as inspired by biological paradigms. It is shown that considerable variation in the tuned frequency can be achieved by actuating a shape change, provided that this is within the limits of the actuator. A feasible design for such an ATVA is one in which the device offers low resistance to the required shape change actuation while not being restricted to low values of the effective stiffness of the vibration absorber. Three such original designs are identified: (i) A pinned–pinned arch beam with fixed profile of slight curvature and variable preload through an adjustable natural curvature; (ii) a vibration absorber with a stiffness element formed from parallel curved beams of adjustable curvature vibrating longitudinally; (iii) a vibration absorber with a variable geometry linkage as stiffness element. The experimental results from demonstrators based on two of these designs show good correlation with the theory.


Sign in / Sign up

Export Citation Format

Share Document