tuning range
Recently Published Documents


TOTAL DOCUMENTS

1468
(FIVE YEARS 242)

H-INDEX

45
(FIVE YEARS 5)

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 89
Author(s):  
Bowen Zhang ◽  
Nuo Chen ◽  
Xinda Lu ◽  
Yuhang Hu ◽  
Zihao Yang ◽  
...  

A chip-scale tunable optical filter is indispensable to meeting the demand for reconfigurability in wavelength division multiplexing systems, channel routing, and switching, etc. Here, we propose a new scheme of bandwidth tunable band-pass filters based on a parity-time (PT) symmetric coupled microresonator system. Large bandwidth tunability is realized on the basis of the tuning of the relative resonant frequency between coupled rings and by making use of the concept of the exception point (EP) in the PT symmetric systems. Theoretical investigations show that the bandwidth tuning range depends on the intrinsic loss of the microresonators, as well as on the loss contrast between the two cavities. Our proof-of-concept device confirms the tunability and shows a bandwidth tuning range from 21 GHz to 49 GHz, with an extinction ratio larger than 15 dB. The discrepancy between theory and experiment is due to the non-optimized design of the coupling coefficients, as well as to fabrication errors. Our design based on PT symmetry shows a distinct route towards the realization of tunable band-pass filters, providing new ways to explore non-Hermitian light manipulation in conventional integrated devices.


2021 ◽  
Author(s):  
Fan Ye ◽  
Fengmin Cheng ◽  
Zhiwei Jia ◽  
JinChuan Zhang ◽  
Ning Zhuo ◽  
...  

Abstract A 20-channel distributed feedback (DFB) quantum cascade laser (QCL) arrays based on uniform buried grating have been demonstrated. In pulsed mode, peak power reaches 80 mW and slope efficiency reaches 167 mW/A for 2.5-mm-long laser in the arrays at room temperature. The loss difference of two band-edge mode increases when reflectivity of the front facet becomes small, which prevents the mode hopping. The device shows linear tuning after the anti-reflectivity coating is deposited in the front facet, maintaining peak power of 64 mW. The whole chip covers a tuning range of 64 cm-1, centering at 8.3 μm, with side-mode-suppression-ratio over 20 dB at room temperature.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Babak Zandi ◽  
Oliver Stefani ◽  
Alexander Herzog ◽  
Luc J. M. Schlangen ◽  
Quang Vinh Trinh ◽  
...  

AbstractSmart integrative lighting systems aim to support human health and wellbeing by capitalising on the light-induced effects on circadian rhythms, sleep, and cognitive functions, while optimising the light’s visual aspects like colour fidelity, visual comfort, visual preference, and visibility. Metameric spectral tuning could be an instrument to solve potential conflicts between the visual preferences of users with respect to illuminance and chromaticity and the circadian consequences of the light exposure, as metamers can selectively modulate melanopsin-based photoreception without affecting visual properties such as chromaticity or illuminance. This work uses a 6-, 8- and 11-channel LED luminaire with fixed illuminance of 250 lx to systematically investigate the metameric tuning range in melanopic equivalent daylight illuminance (EDI) and melanopic daylight efficacy ratio (melanopic DER) for 561 chromaticity coordinates as optimisation targets (2700 K to 7443 K ± Duv 0 to 0.048), while applying colour fidelity index Rf criteria from the TM-30-20 Annex E recommendations (i.e. Rf$$\ge$$ ≥ 85, Rf,h1$$\ge$$ ≥ 85). Our results reveal that the melanopic tuning range increases with rising CCT to a maximum tuning range in melanopic DER of 0.24 (CCT: 6702 K, Duv: 0.003), 0.29 (CCT: 7443 K, Duv: 0) and 0.30 (CCT: 6702, Duv: 0.006), depending on the luminaire’s channel number of 6, 8 or 11, respectively. This allows to vary the melanopic EDI from 212.5–227.5 lx up to 275–300 lx without changes in the photopic illuminance (250 lx) or chromaticity ($$\Delta u'v'$$ Δ u ′ v ′ $$\le$$ ≤ 0.0014). The highest metameric melanopic Michelson contrast for the 6-, 8- and 11-channel luminaire is 0.16, 0.18 and 0.18, which is accomplished at a CCT of 3017 K (Duv: − 0.018), 3456 K (Duv: 0.009) and 3456 K (Duv: 0.009), respectively. By optimising ~ 490,000 multi-channel LED spectra, we identified chromaticity regions in the CIExy colour space that are of particular interest to control the melanopic efficacy with metameric spectral tuning.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2928
Author(s):  
Hsuan-Ling Kao

This study presents a voltage-controlled oscillator (VCO) in a cross-coupled pair configuration using a multi-tapped switched inductor with two switch-loaded transformers in 0.5 µm GaN technology. Two switch-loaded transformers are placed at the inner and outer portions of the multi-tapped inductor. All the switches are turned off to obtain the lowest sub-band. The outer transformer with three pairs of switches is turned on alternately to provide three sub-band modes. A pair of switches at the inner transformer provide a high-frequency band. Two switch-loaded transformers are turned on to provide the highest sub-band. Six modes are selected to provide a wide tuning range. The frequency tuning range (FTR) of the VCO is 27.8% from 3.81 GHz to 8.04 GHz with a varactor voltage from 13 V to 22 V. At a 1 MHz frequency offset from the carrier frequency of 4.27 GHz, the peak phase noise is −119.17 dBc/Hz. At a power supply of 12 V, the output power of the carrier at 4.27 GHz is 20.9 dBm. The figure of merit is −186.93 dB because the VCO exhibits a high output power, low phase noise, and wide FTR. To the best of the author’s knowledge, the FTR in VCOs made of GaN-based high electron mobility transistors is the widest reported thus far.


Sign in / Sign up

Export Citation Format

Share Document