ICONE19-43935 Development of a Helical-Coil Double Wall Tube Steam Generator for 4S Reactor

Author(s):  
Yuko Kitajima ◽  
Takehisa Hino ◽  
Katsuhiko Sato ◽  
Shigeki Maruyama ◽  
Noboru Jimbo
Author(s):  
Sooyun Joh

NuScale Power, Inc. is commercializing a 45 Megawatt electric light water nuclear reactor NuScale Power Module (NPM). Each NPM includes a containment vessel, a reactor vessel, a nuclear reactor core, an integral steam generator, and an integral pressurizer. The NuScale Power Module is cooled by natural circulation. The primary coolant in the Reactor Pressure Vessel is heated in the nuclear core, it rises through a central riser, it spills over and encounters the helical coil steam generator, it is cooled as steam is generated inside the steam generator, and it is again heated in the nuclear core. The Steam Generator also must be designed to provide adequate heat transfer, to allow adequate primary reactor coolant flow, and to provide adequate steam flow to produce the required power output. This paper presents the CFD results that describe the transport phenomena on the heat transfer and fluid flow dynamics in helical coil steam generator tubes. The ultimate goal of the CFD modeling is to predict the steam outlet conditions associated with the chosen helical coil tube geometries, solving the primary and secondary flow region together coupled with the helical coil tube. However, current studies are focused on the primary side with the heat flux boundary condition assigned on the outer surface of the helical coil steam generator. In this study, the ANSYS CFX v. 12.1 [1] was used to solve the three-dimensional mass, momentum and energy equations. The helical coil steam generator has complex geometry and modeling entire geometry requires the enormous memory that is beyond our hardware capability and is not practical. Therefore, geometry was limited to 1 degree of the wedge and 5% of the total length in the middle. Only external flow, single phase flow around the helical coils, is simulated using the standard k-ε model and shear stress transport model. From the results of the numerical simulation, the pressure drop and temperature profiles were determined. It is important to understand thermal hydraulic phenomena for the design and performance prediction of the reactor internal.


Author(s):  
Kai Ye ◽  
Yaoli Zhang ◽  
Jianshu Lin ◽  
Ning Li ◽  
Yinglin Yang ◽  
...  

The helical-coil once-through steam generator (OTSG) is usually used in the nuclear power plant when the compactness of equipment was taken into consideration. The investigation of flow parameters in the primary side is valuable for the optimization of the OTSG. The purpose of this research is to obtain a further understanding of fluid behaviors in the primary side of the OTSG to achieve a more rational design. Using ANSYS ICEM and ANSYS FLUENT, a three-dimensional (3D) computational fluid dynamics (CFD) model was created and analyzed. Through a series of cases, the velocity profiles and pressure drop through the primary side of the helical-coil OTSG have been calculated, and the influences of different structure designs on the coolant flow parameters have also been tested. Ultimately some pertinent suggestions for improvements were proposed, and insight is obtained into the importance of various modeling considerations in such a model with a complicated structure and large-scale grids.


Author(s):  
Jonathan K. Lai ◽  
Elia Merzari ◽  
Marilyn Delgado ◽  
Samuel J. Lee ◽  
Saya Lee ◽  
...  

The helical coil steam generator (HCSG) is a compact heat exchanger that can have high heat transfer even when the pressure drop is low. This makes it advantageous in small modular reactors and high-temperature reactor designs. In order to investigate the fluid phenomena around these helical banked tubes, a test section was built at Texas A&M University to represent flow across two half-rods within HCSG. This study focuses on the validation of large eddy simulation (LES) for this particular geometry. Pressure tap and particle image velocimetry (PIV) measurements have been recorded at an inlet Reynolds number of 8643, and both mean and fluctuating data is compared with the numerical results. The highly scalable spectral-element code Nek5000 has been used to produce the LES calculations. First, simulations of varying polynomial order expansions are made to determine the spatial resolution required to capture the turbulent scales. Then, simulations with different inlet conditions are compared with experimental data. The pressure drop shows good agreement with pressure tap measurements while velocity shows similar characteristics with PIV. Furthermore, the components of the Reynolds stresses and modes from proper orthogonal decomposition have been developed to validate the physics captured.


2019 ◽  
Vol 1198 (4) ◽  
pp. 042014 ◽  
Author(s):  
B W Riyandwita ◽  
M Awwaludin ◽  
Krismawan ◽  
P Zacharias ◽  
E Siswanto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document