Modeling of Acoustic Resistance in Sound Insulation Performance Analysis by FEM

2019 ◽  
Vol 2019 (0) ◽  
pp. J09106
Author(s):  
Naoya MITSUHASHI ◽  
Daisuke MUTO ◽  
Takashi YOSHIZAWA
2021 ◽  
Vol 263 (2) ◽  
pp. 4402-4409
Author(s):  
Atsuo Hiramitsu ◽  
Susumu Hirakawa ◽  
Takahiro Tsuchimoto ◽  
Takashi Yamauchi

The floor impact noise generated in a building often causes problems among residents. The floor impact sound insulation performance of timber construction buildings is lower than that of concrete construction. However, due to the large supply of wood and the stress-relieving effects of wood, the use of wood is being promoted around the world. In Japan, the Act on the Promotion of the Utilization of Wood in Public Buildings was enforced to promote the use of CLT (Cross Laminated Timber) for the effective use of wood. We have been experimentally investigating the effect of floor finish structure in CLT model building. In this paper, we report the measurement results of the change in floor impact sound insulation performance when the suspended ceiling structure was changed. As results, it was confirmed that the effect of the sound-absorbing material in the ceiling cavity and the effect of the double-layer ceiling board were effective. In addition, it was clarified that the dry-type double floor structure with rubber vibration insulator on its legs is an effective floor finish structure for improvement of heavy and light weight floor impact sound insulation performances.


2021 ◽  
Vol 263 (3) ◽  
pp. 3064-3072
Author(s):  
Takashi Yamauchi ◽  
Atsuo Hiramitsu ◽  
Susumu Hirakawa

The air layer between the interior finishes and the structure is used as piping and wiring space. In many cases, ceilings and dry-type double floors are commonly constructed in Japan. However, the effect of the air layer of ceilings and dry-type double floors on the heavy-weight floor impact sound insulation performance has not yet quantitatively investigated. Therefore, in this study, the same floor and ceiling structures were constructed for concrete and CLT buildings, and the heavy-weight floor impact sound was investigated. As results, it was confirmed that the reduction amount of the heavy-weight floor impact sound by the ceiling tended to be smaller in CLT buildings than in concrete buildings. However, the trends were similar. Due to the dry-type double floor structure, the heavy-weight floor impact sound level was increased in concrete building and decreased in CLT building at 63 Hz in the octave band center frequency band. Therefore, it can be said that the dry-type double floor structure can be used to improve the heavy-weight floor impact sound performance in the CLT building.


2016 ◽  
Vol 18 (4) ◽  
pp. 2574-2586 ◽  
Author(s):  
Xiao-mei Xu ◽  
Yi-ping Jiang ◽  
Heow-pueh Lee ◽  
Ning Chen

2013 ◽  
Vol 457-458 ◽  
pp. 703-706 ◽  
Author(s):  
De Jin Qian ◽  
Xue Ren Wang ◽  
Xu Hong Miao

The acoustic performance of sound-isolating and decoupled tiles is studied from macroscopic and microscopic. First, the sound absorption and reverse sound insulation performance of sound-isolating and decoupled tiles is studied based on laminated media; then the acoustic decoupling materials influence on acoustic radiation of double cylindrical shell underwater is studied, using a double-layer cylindrical structure of large-scale as experimental model .There are large amount of operating modes designed in this experiment, such as all laying, partial laying, laying and so on. The results show that sound-isolating and decoupled tiles not only have the effect of weakening the absorption of reflections, but also have reverse sound insulation effect, which increases as frequency increases; for single point mechanical vibration, the tiles can effectively inhibit vibration and sound radiation of high frequency in the double shell.


2011 ◽  
Vol 32 (2) ◽  
pp. 79-81 ◽  
Author(s):  
Rui Lin Mu ◽  
Masahiro Toyoda ◽  
Daiji Takahashi

Sign in / Sign up

Export Citation Format

Share Document