Fatigue Crack Growth Behavior and Proposal of Evaluation Curve for Crack Growth Rate of Austenitic Stainless Steels in BWR Environment

2002 ◽  
Vol 2002.1 (0) ◽  
pp. 439-440
Author(s):  
Masao Itatani ◽  
Masaaki Kikuchi ◽  
Satoshi Namatame ◽  
Shunichi Suzuki ◽  
Katsumasa Miyazaki ◽  
...  
Author(s):  
Ragupathy Kannusamy ◽  
K. Ramesh

Aircraft and pressure vessel components experience stresses that are negative biaxial or multiaxial in nature. Biaxiality is defined as the ratio of stress applied parallel and normal to the crack front. In recent years many experimental studies have been conducted on fatigue crack growth under various biaxial loading conditions. Biaxial loadings affect crack front stresses and strains, fatigue crack growth rate and direction, and crack tip plastic zone size and shape. Many of these studies have focused on positive biaxial loading cases. No conclusive study has been reported out yet that accurately quantifies the influence of negative biaxiality on fatigue crack growth behavior. Lacking validation, implementation on real life problems remains questionable. To ensure safe and optimum designs, it is necessary to better understand and quantify the effect of negative biaxial loading on fatigue crack behavior. In this paper, attempts were made to quantify the effect of biaxial load cases ranging from B = −0.5 to 1.0 on fatigue crack growth behavior. Also an attempt has been made to establish a simplified approach to incorporate the effect of biaxiality into da/dN curves generated from uniaxial loading using an analytical approach without conducting expensive biaxial crack growth testing. Sensitivity studies were performed with existing test data available for AA2014-T6 aluminum alloy. Detailed elastic–plastic finite element analyses were performed with different stress ranges and stress ratios with various crack sizes and shapes on notched and un-notched geometries. Constant amplitude loads were applied for the current work and comparison studies were made between uniaxial and different biaxial loading cases. It was observed from the study that negative biaxiality has a very pronounced effect on the crack growth rate and direction for AA2014-T6 if the externally applied load exceeds 20% of the yield strength as compared with 40% of externally applied load for alloy of steel quoted in the literature.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Ragupathy Kannusamy ◽  
K. Ramesh

Aircraft and pressure vessel components experience stresses that are negative biaxial or multiaxial in nature. Biaxiality is defined as the ratio of stress applied parallel and normal to the crack front. In recent years, many experimental studies have been conducted on fatigue crack growth (FCG) under various biaxial loading conditions. Biaxial loadings affect crack front stresses and strains, fatigue crack growth rate and direction, and crack tip plastic zone size and shape. Many of these studies have focused on positive biaxial loading cases. No conclusive study has been reported out yet that accurately quantifies the influence of negative biaxiality on fatigue crack growth behavior. Lacking validation, implementation on real life problems remains questionable. To ensure safe and optimum designs, it is necessary to better understand and quantify the effect of negative biaxial loading on fatigue crack behavior. This paper presents the results of a study to quantify the effect of biaxial load cases ranging from B = −0.5 to 1.0 on fatigue crack growth behavior. Also, a simplified approach is presented to incorporate the effect of biaxiality into da/dN curves generated from uniaxial loading using an analytical approach without conducting expensive biaxial crack growth testing. Sensitivity studies were performed with existing test data available for AA2014-T6 aluminum alloy. Detailed elastic-plastic finite element analyses were performed using the different stress ranges and stress ratios with various crack sizes and shapes on notched and unnotched geometries. Constant amplitude loads were applied for the current work and comparison studies were made between uniaxial and different biaxial loading cases. It was observed from the study that negative biaxiality has a very pronounced effect on the crack growth rate and direction for AA2014-T6 if the externally applied load equal to 30% of the yield strength as compared with 40% of externally applied load for steel alloy quoted in the literature.


2011 ◽  
Vol 337 ◽  
pp. 674-677
Author(s):  
Kun Ning Jia

The fatigue crack growth behavior of weld joint of Q460NH steel is very important for estimating life-time in terms of a crack length in weld joint. In this paper , fatigue crack growth behavior of weld metal (WM),heat affected zone(HAZ) and mother metal(BM) have been researched at room temperature. The variation of fatigue crack growth rate(da/dN) with stress intensity factor range (ΔK) for WM, HAZ and BM is discussed within the Paris region. It is shown that fatigue crack growth rate of WM is the slowest in tree parts .


Author(s):  
David Y. Jeong ◽  
Pawel Woelke

Abstract The most common rail defect encountered in continuously welded rail is known as the detail fracture. The U.S. Department of Transportation, Federal Railroad Administration has sponsored and managed research over the past several decades to understand the structural integrity of rail in general, and the fatigue crack growth behavior of detail fractures in particular. Control of rail integrity and defect growth is conducted via periodic rail tests (i.e. inspections) to ensure that rail defects do not become large enough to cause rail failure. Moreover, federal regulations have been codified to establish a maximum interval between rail inspections based on the results of government-sponsored research. Over the past several decades, however, rail manufacturing has evolved and improved, particularly the head-hardening process to improve wear resistance. Propagation life of railroad rail was examined in previous research using fatigue crack growth data for non-head-hardened rail. Recently Thornton-Tomasetti conducted research, sponsored by FRA, to examine the fatigue crack growth behavior of modern rail steels (i.e. railroad rails with head-hardening). The initial results of the more recent research effort were reported in the 2019 Joint Rail Conference. In this paper, fatigue crack growth rate data generated for head-hardened rail are used to examine the fatigue crack growth life of detail fractures under nominal revenue service conditions. Moreover, this paper applies a probabilistic approach to estimate rail life to account for the inherent variability or scatter typically observed in fatigue crack growth rate data. Regression methods are employed to derive the parameters for the Walker crack growth rate equation, which are subsequently treated as correlated, multivariate, and normally distributed random variables. Data from four different rail steels are used in the regression analyses, which are referred to as: Advanced Head Hardened (AHH), Head Hardened (HH), Standard Strength (SS), and Colorado Fuel and Iron (CF&I). Monte Carlo simulations of fatigue growth of detail fractures are carried out to estimate fatigue life distributions for each of the different rails. The results from these four rail steels are compared to those based on the previous research for non-head-hardened rails. Implications of these comparisons on determining rail testing intervals are discussed.


Sign in / Sign up

Export Citation Format

Share Document