Experimental studies on horizontal axis wind turbine in wind tunnel

2003 ◽  
Vol 2003.2 (0) ◽  
pp. 79-80
Author(s):  
Yukimaru SHIMIZU ◽  
Takao MAEDA ◽  
Yasunari KAMADA ◽  
Kotaro SUGI ◽  
Yusaku SAKAI
2003 ◽  
Vol 27 (4) ◽  
pp. 299-316 ◽  
Author(s):  
Matthew M. Duquette ◽  
Jessica Swanson ◽  
Kenneth D. Visser

Experimental studies were conducted on a modified Rutland 500 horizontal axis wind turbine to evaluate numerical implications of solidity and blade number on the aerodynamic performance. Wind tunnel data were acquired on the turbine with flat-plate, constant-chord blade sets and optimum-designed blade sets to compare with theoretical trends, which had indicated that increased solidity and blade number more than conventional 3-bladed designs, would yield larger power coefficients, CP. The data for the flat plate blades demonstrated power coefficient improvements as the range of solidities was increased from 7% to 27%, but did not indicate performance gains for increased blade numbers. It was also observed that larger pitch angles decreased the optimum tip speed ratio range significantly with a small (5% or less) change in maximum CP. The optimum-design 3-bladed rotors produced an increased experimental CP as solidity increased, with reduced tip speed ratio, at the optimum operating point. As blade number was increased at a constant solidity of 10% from 3 to 12 blades, aerodynamic efficiency and power sharply decreased, contrary to the numerical predictions and the flat plate experimental results. Low Reynolds numbers and wind tunnel blockage effects limit these conclusions and a full scale prototype rotor is being constructed to examine the results of the numerical and experimental studies using a side-by-side comparison with a commercially available wind turbine at the Clarkson University wind-turbine test site.


Author(s):  
K. Sankaranarayanan ◽  
S. Krishnakumar ◽  
G. Victor PaulRaj ◽  
R. Rahul ◽  
S. Chitra Ganapathi

2013 ◽  
Vol 291-294 ◽  
pp. 445-449
Author(s):  
De Shun Li ◽  
Ren Nian Li

Field experimental study is performed on a 33 kW horizontal axis wind turbine with rotor diameter of 14.8 m. The distribution of pressure is gathered by disposed 191 taped pressure sensors span-ward on seven particular sections of a blade. The results will provide a comparative basis to wind tunnel experiment and numerical calculation of the flow of the wind turbine.


Sign in / Sign up

Export Citation Format

Share Document