Numerical analysis on chaotic vibration of a cantilever beam with impact

2004 ◽  
Vol 2004.7 (0) ◽  
pp. 187-188
Author(s):  
Shinichi MARUYAMA ◽  
Takayuki KATO ◽  
Hisashi SUZUKI ◽  
Ken-ichi NAGAI ◽  
Takao YAMAGUCHI
2020 ◽  
Vol 39 (2) ◽  
pp. 351-362
Author(s):  
M.M. Ufe ◽  
S.N. Apebo ◽  
A.Y. Iorliam

This study derived analytical solutions for the deflection of a rectangular cross sectional uniformly tapered cantilever beam with varying configurations of width and breadth acting under an end point load. The deflection equations were derived using a numerical analysis method known as the finite element method. The verification of these analytical solutions was done by deterministic optimisation of the equations using the ModelCenter reliability analysis software and the Abaqus finite element modelling and optimisation software. The results obtained show that the best element type for the finite element analysis of a tapered cantilever beam acting under an end point load is the C3D20RH (A 20-node quadratic brick, hybrid element with linear pressure and reduced integration) beam element; it predicted an end displacement of 0.05035 m for the tapered width, constant height cantilever beam which was the closest value to the analytical optimum of 0.05352 m. The little difference in the deflection value accounted for the numerical error which is inevitably present in the analyses of structural systems. It is recommended that detailed and accurate numerical analysis be adopted in the design of complex structural systems in order to ascertain the degree of uncertainty in design. Keywords: Deflection, Finite element method, deterministic optimisation, numerical error, cantilever beam.


2018 ◽  
Vol 1 (1) ◽  
pp. 16-23 ◽  
Author(s):  
Siva Sankara Babu Chinka ◽  
Balakrishna Adavi ◽  
Srinivasa Rao Putti

In this paper, the dynamic behavior of a cantilever beam without and with crack is observed. An elastic Aluminum cantilever beams having surface crack at various crack positions are considered to analyze dynamically. Crack depth, crack length and crack location are the foremost parameters for describing the health condition of beam in terms of modal parameters such as natural frequency, mode shape and damping ratio. It is crucial to study the influence of crack depth and crack location on modal parameters of the beam for the decent performance and its safety. Crack or damage of structure causes a reduction in stiffness, an intrinsic reduction in resonant frequencies, variation of damping ratios and mode shapes. The broad examination of cantilever beam without crack and with crack has been done using Numerical analysis (Ansys18.0) and experimental modal analysis. To observe the exact higher modes of beam, discretize the beam into small elements. An experimental set up was established for cantilever beam having crack and it was excited by an impact hammer and finally the response was obtained using PCB accelerometer with the help sound and vibration toolkit of NI Lab-view. After obtaining the Frequency response functions (FRFs), the natural frequencies of beam are estimated using peak search method. The effectiveness of experimental modal analysis in terms of natural frequency is validated with numerical analysis results. This paper contains the study of free vibration analysis under the influence of crack at different points along the length of the beam.


2003 ◽  
Vol 2003 (0) ◽  
pp. _440-1_-_440-5_
Author(s):  
Takao YAMAGUCHI ◽  
Jun-ichi SAKOH ◽  
Ken-ichi NAGAI ◽  
Sinichi MARUYAMA ◽  
Kazuya SAKAIMOTO

2013 ◽  
Vol 336-338 ◽  
pp. 1439-1442 ◽  
Author(s):  
Zhong Xing Sun ◽  
Li Wei Tang ◽  
Jie Zhou

Based on the background of rotary platform of launching tower ,the continuum method based on rigidity equivalent principle and mass equivalent principle is used to transform the truss structure to an uniform solid cantilever beam rotating around its edge ,which makes the vibration equations establishment with methods of parameter supposition and numerical analysis possible . The agreement of the calculation results and the test results means method of this paper available in the vibration analysis of cantilever truss structure .


2014 ◽  
Vol 592-594 ◽  
pp. 1040-1044
Author(s):  
Shakti P. Jena ◽  
D.R. Parhi

In the present work, the dynamic deflection of a cantilever beam subjected to moving mass has been investigated theoretically and numerically. The mass is moved by an external force. The effects of mass magnitude and the speed of the moving mass on the response of the beam structure have been investigated. Using continuum mechanics the differential equation for the systems have been developed and solved by fourth order Runge-Kutta method with different boundary conditions. Numerical analysis has been carried out with different examples to describe the response of the beam structure.


Sign in / Sign up

Export Citation Format

Share Document