208 Lattice Boltzmann Simulation of Three-Dimensional Bubble Flow in a Channel including Solid Bodies

2005 ◽  
Vol 2005.2 (0) ◽  
pp. 101-102
Author(s):  
Yusuke MIZUTANI ◽  
Masato YOSHINO
2021 ◽  
Vol 321 ◽  
pp. 01014
Author(s):  
Makoto Sugimoto ◽  
Tatsuya Miyazaki ◽  
Zelin Li ◽  
Masayuki Kaneda ◽  
Kazuhiko Suga

Stator coils of automobiles in operation generate heat and are cooled by a coolant poured from above. Since the behavior characteristic of the coolant poured on the coils is not clarified yet due to its complexity, the three-dimensional two-phase flow simulation is conducted. In this study, as a steppingstone to the simulation of the liquid falling on the actual coils, the coils are modelled with horizontal rectangular pillar arrays whose governing parameters can be easily changed. The two-phase flows are simulated using the lattice Boltzmann method and the phase-field model, and the effects of the governing parameters, such as the physical properties of the cooling liquid, the wettability, and the gap between the pillars, on the wetting area are investigated. The results show that the oil tends to spread across the pillars because of its high viscosity. Moreover, the liquid spreads quickly when the contact angle is small. In the case that the pillars are stacked, the wetting area of the inner pillars is larger than that of the exposed pillars.


Author(s):  
Minglei Shan ◽  
Yu Yang ◽  
Hao Peng ◽  
Qingbang Han ◽  
Changping Zhu

Understanding the dynamic characteristic of the cavitation bubble near a solid wall is a fundamental issue for the bubble collapse application and prevention. In the present work, an improved three-dimensional multi-relaxation-time pseudopotential lattice Boltzmann model is adopted to investigate the cavitation bubble collapse near the solid wall. With respect to thermodynamic consistency, Laplace law verification, the three-dimensional pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. By the theoretical analysis, it is proved that the model can be regarded as a solver of the Rayleigh–Plesset equation, and confirmed by comparing the results of the lattice Boltzmann simulation and the Rayleigh–Plesset equation calculation for the case of cavitation bubble collapse in the infinite medium field. The bubble collapse near the solid wall is modeled using the improved pseudopotential multi-relaxation-time lattice Boltzmann model. We find the lattice Boltzmann simulation and the experimental results have the same dynamic process by comparing the bubble profiles evolution. Form the pressure field and the velocity field evolution it is found that the tapered higher pressure region formed near the top of the bubble is a crucial driving force inducing the bubble collapse. This exploratory research demonstrates that the lattice Boltzmann method is an alternative tool for the study of the interaction between collapsing cavitation bubble and matter.


2013 ◽  
Vol 135 (12) ◽  
Author(s):  
Prasanna R. Redapangu ◽  
Kirti Chandra Sahu ◽  
S. P. Vanka

A three-dimensional (3D), multiphase lattice Boltzmann approach is used to study a pressure-driven displacement flow of two immiscible liquids of different densities and viscosities in a square duct. A three-dimensional, 15-velocity (D3Q15) lattice model is used. The effects of channel inclination, viscosity, and density contrasts are investigated. The contours of the density and the average viscosity profiles in different planes are plotted and compared with those obtained in a two-dimensional (2D) channel. We demonstrate that the flow dynamics in a 3D channel is quite different as compared to that of a 2D channel. We found that the flow is relatively more coherent in a 3D channel than that in a 2D channel. A new screw-type instability is seen in the 3D channel that cannot be observed in the 2D channel.


Sign in / Sign up

Export Citation Format

Share Document