2212 Free-surface flow calculation with higher-order conservative scheme

2006 ◽  
Vol 2006.1 (0) ◽  
pp. 101-102
Author(s):  
Kenji TAKIZAWA ◽  
Yousuke IMAI ◽  
Takayuki AOKI
2016 ◽  
Vol 64 (3) ◽  
pp. 281-288
Author(s):  
Yebegaeshet T. Zerihun

Abstract This study addresses a particular phenomenon in open channel flows for which the basic assumption of hydrostatic pressure distribution is essentially invalid, and expands previous suggestions to flows where streamline curvature is significant. The proposed model incorporates the effects of the vertical curvature of the streamline and steep slope, in making the pressure distribution non-hydrostatic, and overcomes the accuracy problem of the Saint-Venant equations when simulating curvilinear free surface flow problems. Furthermore, the model is demonstrated to be a higher-order one-dimensional model that includes terms accounting for wave-like variations of the free surface on a constant slope channel. Test results of predicted flow surface and pressure profiles for flow in a channel transition from mild to steep slopes, transcritical flow over a short-crested weir and flow with dual free surfaces are compared with experimental data and previous numerical results. A good agreement is attained between the experimental and computed results. The overall simulation results reveal the satisfactory performance of the proposed model in simulating rapidly varied gravity-driven flows with predominant non-hydrostatic pressure distribution effects. This study suggests that a higher-order pressure equation should be used for modelling the pressure distribution of a curvilinear flow in a steeply sloping channel.


1975 ◽  
Vol 3 (1) ◽  
pp. 51-68 ◽  
Author(s):  
Thomas G. Smith ◽  
J.O. Wilkes

Author(s):  
Arthur E. P. Veldman ◽  
Henk Seubers ◽  
Peter van der Plas ◽  
Joop Helder

The simulation of free-surface flow around moored or floating objects faces a series of challenges, concerning the flow modelling and the numerical solution method. One of the challenges is the simulation of objects whose dynamics is determined by a two-way interaction with the incoming waves. The ‘traditional’ way of numerically coupling the flow dynamics with the dynamics of a floating object becomes unstable (or requires severe underrelaxation) when the added mass is larger than the mass of the object. To deal with this two-way interaction, a more simultaneous type of numerical coupling is being developed. The paper will focus on this issue. To demonstrate the quasi-simultaneous method, a number of simulation results for engineering applications from the offshore industry will be presented, such as the motion of a moored TLP platform in extreme waves, and a free-fall life boat dropping into wavy water.


2005 ◽  
Vol 63 (5-7) ◽  
pp. e1897-e1908 ◽  
Author(s):  
E. Miglio ◽  
S. Perotto ◽  
F. Saleri

Sign in / Sign up

Export Citation Format

Share Document